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Abstract of the Thesis 

 

Non-invasive Estimation of an Arterial Input function for Quantitative Positron 

Emission studies using a Wrist Scanner 

 

by 
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Doctor of Philosophy 

 

in 

 

Biomedical Engineering 

 

 

Stony Brook University 

 

 

2007 

 

Positron emission tomography (PET) is a widely-used Neuroimaging assessment tool that 

assists with disease diagnosis, treatment evaluation and study of brain function. In 

addition to its use for qualitative assessment, PET may also be used, especially for basic 

research and/or treatment evaluation, to provide quantitative estimates of physiological or 

metabolic parameters of interest. For such quantification, an input function, the 

administered radiotracer concentration in plasma, is required. Unfortunately, using 

current technology, the acquisition of this input function often demands invasive 

procedures that produce discomfort for the patient and a potential health risk for medical 

personnel.  This thesis aims to develop and characterize a blood radioactivity scanner for 

noninvasive estimation of an input function. The detector module consists of a 32 

element Lutetium oxyorthosilicate (LSO) crystal array coupled to an Avalanche 

Photodiode (APD). To establish the fundamental parameters required to meet the needs 

proposed in research and design methods, a simple two detector pair system was built. 

Preliminary work included detection of an input bolus of a radioactive tracer flowing 

through an arterial hole in a phantom representing the human wrist, determining the 

sensitivity and spatial resolution of the scanner.  These initial tests helped characterize 

and optimally design the prototype. The prototype was then used in a real clinical setting 

for feasibility studies. Non negligible effects of partial volume and spillover were 

assessed and corrected for using a small animal full ring tomograph for the wrist scans 

and a brain tomograph for human internal carotid arteries.  Venous samples were used to 

calibrate the image derived time activity curve and correct for unchanged radiotracer to 

obtain an input function.  Monte Carlo based simulations were done to validate the use of 

a full ring tomograph for absolute quantification of radioactivity from the wrist arteries. 

Thus, an arterial input function can be obtained without arterial catheterization thereby 

greatly reducing patient discomfort while increasing medical personnel safety.  
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Chapter 1  

 

Introduction 

 

PET is an imaging technique that allows the in vivo measurement of tissue 

functions in animals and humans.  After the administration of tracer quantities of a 

radiolabeled pharmaceutical, the distribution of radioactivity is followed over time with a 

temporal resolution of seconds and a spatial resolution of millimeters.  Mathematical 

modeling techniques, like compartmental or graphical analyses, can then be applied to the 

dynamic images in order to extract physiological parameters of interest such as the rates 

of transport, metabolism or binding of radiotracers.  This requires the accurate 

characterization of the function that describes the time course of radiotracer delivery to 

the tissue, known as the input function. The input function is usually derived from 

multiple blood samples drawn from an arterial cannula and processed to obtain the 

radiotracer concentration in plasma.  Because this method is invasive, time consuming 

and prone to errors, it cannot always be implemented and practical alternatives are called 

for.  

 The goal of this work is the non-invasive estimation of an input function using a 

small PET scanner to quantify the radioactivity detected in the wrist arteries.  While the 

idea of an independent scanner for the estimation of an image derived input function 

seemed like an ideal solution, the 4 detector prototype lacked characteristics, such as 

sensitivity for absolute quantification of radiotracer concentration needed in kinetic 

analyses.  Access to a full ring tomograph, with higher sensitivity, allowed proof of 

principle studies.  Because the caliber of the wrist arteries (~ 2 mm) is smaller than twice 

the spatial resolution of the tomograph (~ 2.6 mm), the radioactivity concentration 

extracted from these PET images must be corrected for partial volume and spillover.  

Furthermore, these values are prone to statistical noise due to small size of the regions of 

interest and the short time frames required to capture the rapidly changing time course of 

radioactivity concentration following a bolus injection of the radiotracer.   
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 To make complete use of the wrist scanner data, a correction for the partitioning 

of radioactivity between plasma and erythrocytes as well as for peripheral metabolism of 

a radiotracer needs to be applied in order to extract the contribution of the injected 

radiotracer in plasma from the total radioactivity measured in the blood.   

 

 The structure of this thesis is illustrated in Figure 1.1. Chapter 2 gathers the 

general background information required to address the multi-faceted problem at hand. 

Section 2.1 explains how the radioactivity concentration in an object is measured using 

PET.  Section 2.2 follows with an overview of mathematical modeling techniques most 

commonly applied to dynamic PET data.   The interpretation of a PET study does not 

only rely on knowledge of the technical aspects of the data generation and processing, 

but as importantly, on the understanding of the biological aspects underlying the 

radiotracer in the study.  Because there are three radiotracers used in the thesis, section 

2.3 reviews the biochemical data and the mathematical models for these tracers.  A non-

invasive method to generate a plasma input function is developed in steps in the next 

three chapters.  The feasibility of the method is first demonstrated in chapter 3 where 

basic characterization of the scanner is detailed.  Chapter 4 provides a proof of principle 

evaluating the constraints of the 4 detector scanner.  An equation correcting for partial 

volume effect is introduced.  Chapter 5 refines the use of these corrections by employing 

the internal carotid arteries from human PET brain scans.  This chapter completes the use 

of a non-invasive approach, correcting for the presence of metabolites of the parent 

radiotracer.  It validates the use of venous blood samples to substitute for arterial blood 

samples.  For the completeness of this thesis, it demonstrates a non invasive approach for 

estimating of a blood time activity curve, a less invasive calibration of the curve and 

correction for unchanged radiotracer for estimation of an input function.  The thesis 

concludes with chapter 6 which wraps analysis and comparison of methods studied in the 

preceding chapters. Similarities, differences, constraints and practical implementations 

are compared for clinical implementation of the work derived from this thesis.  
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Chapter 2 

 

Physiological Quantification of PET Data 

 

Positron emission tomography (PET) is a Nuclear Medicine imaging technique 

that uses a dedicated tomograph to detect the annihilation photons emitted following the 

administration of a pharmaceutical labeled with a positron-emitting isotope.  These 

molecules are designed to accumulate in the tissue of interest, and this accumulation and 

the rate of accumulation will ideally reflect specific physiological or biochemical 

processes.  The acquired data are processed using reconstruction techniques to generate 

cross-sectional images of the spatio-temporal distribution of the radioactivity.  PET 

studies aim at quantifying regional and/or global changes in tissue function, for example, 

between normal and disease states, or before and after treatment.  The ability to detect 

these changes depends on the signal-to-noise characteristics of the PET data and the 

magnitude of the changes.  One of the motivations behind the development of 

mathematical compartmental models is to increase the power to detect changes in the 

physiological parameters of interest brought, about by different conditions (Carson, 1991).  

This is accomplished by explicitly accounting for changes in extraneous factors (e.g. 

radiotracer delivery), thus reducing intersubject variations.  On the other hand, 

inaccuracies in the model itself can increase intersubject variations either by introducing 

biases due to incorrect assumptions, or by propagating errors from additional 

measurements required by the model (e.g. input function).  The application of a 

mathematical model to PET data is beneficial if the variations that it removes override 

those that it produces.  When significant physiological changes are detected, however, the 

model facilitates the quantification and interpretation of these changes. 

 

This thesis is concerned with the extraction of regional information from PET 

images of the wrist (using the wrist scanner) and the brain (using a dedicated brain 

scanner) and the use of these data in the determination of physiological parameters that 

will distinguish between normal and disease states.  This task requires that each voxel 
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value in the reconstructed image represents the absolute radioactivity concentration in the 

corresponding tissue volume.  The acquisition and reconstruction of PET images are 

explained in section 2.1. Section 2.2 presents the compartmental modeling approaches 

used in the analysis of the calibrated PET data.  The last section focuses on the 

quantification of the kinetics of the radiotracers concerned with the thesis, F-18 Fluoro-2-

Deoxyglucose (F-18 FDG), C-11 Clorgyline and C-11 Raclopride.  

 

2.1 Radioactivity Quantification Using PET 

 

2.1.1 Image Acquisition and Reconstruction 

 

The PET signal is generated in several steps and captured by a sophisticated 

radiation detection system.  The detected signal also undergoes several processing steps 

in its transformation into a volumetric image representing the distribution of radioactivity 

concentration in tissues. 

 

2.1.1.1 Signal Generation: The Radiotracers 

 

Radiopharmaceuticals 

A radiopharmaceutical is a radioactive compound which can be administered 

safely to humans for diagnosis or treatment purposes.  It is usually made up of 

radioisotope bound to a pharmaceutical (a biomolecule or a drug).  When used as an 

imaging agent, the decaying radioisotope emits the signal detected in PET, and the 

physico-chemical properties of the pharmaceutical determine the spatial distribution of 

the emitted signal.   Radiopharmaceuticals which are not designed to interact with the 

system, but only to assess the function are called radiotracers.  Ideally, the radiotracer 

would not perturb the physiological or biochemical pathways it is designed to measure.  

The lightest PET radioisotopes (
ll
C, 

13
N, 

l5
0 and 

18
F) can be used to label organic 

compounds isotopically.  Furthermore, the radiotracer should not elicit a pharmacological 

response.  These radioisotopes can be produced in high specific activities so that very 

tiny amounts of the radiopharmaceutical can be administered.  Their short half life means 
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that the radiation dose to the patient is usually quite small.  It still remains that most often 

the magnitude of the amount of activity administered (and therefore the signal) is limited 

by the radiation dose given to the subject.  On the other hand, the fast decay imposes 

restrictions on the production of the radioisotope - ideally on site using a dedicated 

particle accelerator or cyclotron - and on the speed and complexity of the chemical 

synthesis.  PET radiochemistry has become very versatile, with the capacity to label a 

wide variety of biomolecules at many positions.  However, the number of useful PET 

radiotracers is restricted since they must satisfy a number of criteria, the most important 

ones being selectivity to one or few pathways, delivery to the organ of interest, limited 

peripheral metabolism and suitable kinetics for the duration of a PET study (Pike, 1993). 

 

Radioisotopes 

Nuclei that contain an excess of protons decay either by electron capture or 

positron emission. In positron emission, a proton is converted to a neutron and a positive 

electron, called positron (β
+
), is emitted along with an electronic neutrino (νe): 

 

                                                         e

A

Z

A

Z YX νβ ++→ −1           (2.1) 

 

An orbital electron is also ejected so that the daughter nuclide remains neutral.  Whereas 

any proton rich nucleus can decay by electron capture, only nuclei whose parent ( XA

Z ) 

mass exceeds the daughter ( YA

Z 1− ) mass by at least 1022 keV/c
2
 - the combined mass of 

the positron and the ejected electron - can decay by positron emission, so that the two 

processes are in competition.  The remainder of the mass difference is transformed into 

kinetic energy that is shared between the positron and the neutrino. 

 

Positron interactions and Annihilation 

In matter, the positron subsequently loses its kinetic energy by ionizing and 

exciting the surrounding material.  Most energy is transferred by inelastic collisions with 

atomic electrons.  When the positrons reach thermal energies, they start to interact with 

electrons either by annihilation, which produces two 511 keV photons which are anti-
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parallel in the positron’s frame, or by the formation of a hydrogen-like orbiting couple 

called positronium.  In its ground-state, positronium has two forms - ortho-positronium, 

where the spins of the electron and positron are parallel, and para-positronium, where the 

spins are anti-parallel. Para-positronium again decays by self-annihilation, generating two 

anti-parallel 511 keV photons. Ortho-positronium self-annihilates by the emission of 

three photons (Evans, 1955). Both forms are susceptible to the pick-off process, where 

the positron annihilates with another electron.  Free annihilation and the pick-off process 

are responsible for over 80% of the decay events.  Variations in the momentum of the 

interacting particles result in an angular uncertainty in the direction of the 511 keV 

photons of around 4 mrad in the observer’s frame (Rickey et al 1992).  In a PET camera 

of diameter 1m and active transaxial FOV of 0.6m this results in a positional inaccuracy 

of 2-3 mm.  The probability of positron emission (or the positron branching ratio), the 

positron energy and range in water for the radioisotopes commonly used in human PET 

studies are gathered in Table 2.1.  The range values indicate that the position of the 

radiolabeled molecule at the time of the positron emission can be inferred with at best a 

precision of about 1 mm. 

 

Table 2.1 Properties of positron emitting isotope commonly used in PET studies.  

Isotope Half Life 

(min) 

β
+
 branching 

ration 

Maximum β
+ 

energy (Mev) 

β
+
 range in water 

(FWHM mm) 

11
C 20.4 1 0.96 1.2 

13
N 9.97 1 1.19 1.4 

15
O 2.04 1 1.70 1.5 

18
F 109.8 0.97 0.64 1.0 

68
Ga 67.7 0.89 1.89 1.7 

82
Rb 1.27 0.95 3.15 1.7 

                         (Bailey et al, 1996) 

Photon interactions 

The annihilation photons further interact with the surrounding material, 

predominantly through the photoelectric effect or Compton scattering, pair production 
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not being energetically possible.  The photoelectric effect occurs when a photon interacts 

with an atomic electron, most often bound in the K-shell.  The photon is completely 

absorbed and the   photoelectron is ejected with a kinetic energy equal to the difference 

between the photon energy and the electron binding energy.  The probability of 

photoelectric absorption, τ, increases with the atomic number, Z of the surrounding 

material and decreases with the incident photon energy, Eγ approximately as τ ~ Z
5
/ Eγ

 3.5
 

(Knoll, 1989).  In Compton scattering, the photon interacts with a free or weakly bound 

electron.  The photon is deflected through an angle θ from its incident direction and 

transfers part of its initial energy to the recoil electron.  The energy lost by the 

annihilation photon to the recoil electron in a single interaction varies between 0 at θ = 0º 

to 341 keV at θ = 180º.  For a wide range of materials, the probability of Compton 

scattering, α increases linearly with the atomic number of the surrounding material and 

falls gradually with the incident photon energy (Knoll, 1989).  The scattered photon can 

undergo more interactions with the surrounding material, either another Compton scatter 

or a photoelectric absorption.  The overall probability of interaction, called the linear 

attenuation coefficient, is the sum of the photoelectric absorption and Compton scattering 

probabilities, µ = τ + α. 

 

2.1.1.2 Signal Detection: The Tomograph 

 

Detection systems are a key component of any imaging system, and an 

understanding of their properties is important for establishing appropriate operating 

criteria or designing schemes for obtaining quantitative information.  In this section 

scintillation detection systems, which are used in the majority of PET tomographs, are 

discussed. 

 

Detectors 

The scintillation process involves the conversion of high-energy photons into 

visible light via interaction with a scintillating material, and consists of the following 

steps: 
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1) A photon incident on the scintillator creates an energetic electron, either by Compton 

scatter or by photoelectric absorption. 

2) As the electron passes through the scintillator, it loses energy and excites other 

electrons in the process. 

3) These excited electrons decay back to their ground state, giving off light as they do so.  

The higher the energy of the electron (and the photon that created it), the larger the 

number of collisions it must undergo to slow down and the more light that will be given 

off. 

On the face of the crystal opposite to the face of photon incidence, a photomultiplier tube 

(PMT) collects the visible light and generates an amplified electronic pulse. 

The choice of a detector material for PET is based on an ideal combination of 

properties.  In order to determine precisely the position of the annihilation event, the size 

of each crystal should ideally be kept as small as possible.  Because annihilation photons 

have a high probability of escaping from small detectors, the scintillator material must 

have a high stopping power if the detection efficiency is not to be compromised.  

Compton scattered photons have a lower energy than unscattered photons and 

discrimination between the two types of events requires good energy resolution from the 

scintillator which means an ideal scintillator will give off more light per unit energy 

deposited.  At high count rates, the number of random coincidences and dead time losses 

(see section Corrections for High Count Rates below) is limited with a scintillator that 

offers good time resolution.  The properties of some recent scintillators are shown in 

table 2.2. 

            Table 2.2 Properties of Scintillators 

 LYSO LSO GSO BGO 

Decay time (ns) 53 40 60/600 60/300 

(fast/slow ratio)   (7/1) (1/10) 

Light output(PMT) 75 75 20 15 

Light Output (APD) 85 85 40 30 

Peak Emission (nm) 420 420 430 480 

Index of refraction 1.81 1.82 1.85 2.15 

Density 5.37 7.35 6.71 7.13 
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Effective Z 54 65 58 73 

1/µ 511 keV (mm) 20.0 12.3 15.0 11.6 

 

Bismuth germanate (Bi4Ge3012 or BGO) has a high density (7.13 g/cm3) and a 

large effective atomic number (Z=83 for Bi), resulting in the largest probability per unit 

volume for photoelectric absorption of commonly available scintillation materials (Knoll, 

1989).  The high stopping power of BGO overrides its other less desirable properties of a 

relatively low light yield (15% of that of thallium activated sodium iodide (NaI(T1)) and 

a slow light decay (300 ns).  The slower scintillation process of BGO combined with its 

lower scintillation efficiency results in an overall time resolution that is about a factor of 

two worse than that of NaI(TI) (FWHM=6.8 ns for BGO vs. 3.8 ns for NaI(T1)) (Cho and 

Farukhi, 1977).  Because fewer visible light photons are being produced per unit of 

energy deposited in the BGO crystal, its energy resolution is about a factor of two worse 

than that of Nal(T1) (11% for BGO and 6% for NaI(T1) at 662 keV) (Ludziejewski, 

1995).  With a density of 7.4 g/cm3 and an atomic number of Z=71 for Lu, cerium-doped 

lutetium oxyorthosilicate (Lu2(SiO4)O:Ce or LSO) has a detection efficiency for 

annihilation photons comparable to that of BGO.  Its much higher scintillation efficiency 

(>50% of that of NaI(T1)) and faster scintillation process (decay time constant of 47 ns) 

compared to that of BGO yield a superior time resolution of 0.400 ns (FWHM) 

(Ludziejewski et al. 1995).  Inconsistencies in the production of LSO in both light output 

and decay time have hampered the improvement in energy resolution of LSO over that of 

BGO (Karp, 2002).  Because of its favorable combination of properties, LSO has 

superseded BGO as a detector material for PET in 3D mode (section Detection Geometry 

below) (Nutt 2002, Cherry 1997) 

 

The performance of a detector for PET does not depend only on the material 

properties, but also on the detector design.  By grooving a scintillator block into, for 

example, an eight by eight matrix of crystal elements coupled to four PMTs (Casey and 

Nutt, 1986), the block detector improves both the sampling frequency and detection 

efficiency over that of the single-crystal detector.  The visible light is channeled down the 

individual crystal elements and distributed to the PMTs in different combinations by 
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slotting the block at increasing depths with increasing distance from the centre of the 

block.  The crystal in which the interaction occurred is identified by comparing the sums 

of the outputs of adjacent PMTs.  The output of all four PMTs is also summed and sent to 

a pulse processing unit, in order to determine the energy absorbed in the detector (from 

the pulse height,) and  the time of arrival of the incident photon (from the pulse leading 

edge).  This design, initially created for BGO, is also applied to LSO.  More recently 

Avalanche photodiodes (APDs) are being employed as PET detectors.  These are 

photodetectors that can be regarded as the semiconductor analog to photomultipliers.  

The main advantage of the avalanche photodiode over the usual photodiode is its internal 

gain, which can be 300X or higher.  An APD is a type of photodiode that internally 

amplifies the photocurrent.  The basic APD structure is a p-n junction under a reverse 

bias voltage.  Near the pn junction the silicon becomes depleted of electrical charge. This 

is known as the depletion region.  The thickness of the depletion region can be varied 

with the reverse voltage.  Photons created in the scintillator enter the depletion region and 

create charge carriers that drift towards the electrodes.  In APD’s, the electric field is high 

enough to accelerate the charge carriers so that they can produce more electron-hole pairs 

by ionization.  Hence, each photon can produce an avalanche of charge carriers. 

 

Coincidence counting 

When a positron annihilates, the mass is converted completely into energy and 

two annihilation photons are emitted simultaneously at 180° ± 0.25° to each other.  

Coincidence events are detected by comparing the output of two detectors to a 

coincidence unit. Whenever two pulses are received within a given time interval, called 

the coincidence time window, a binary pulse is generated by the coincidence unit. The 

width of the coincidence time window is selected to include the time resolution of the 

detectors, time variations between branches due to additional electronic components in 

the detector circuits, and the maximum time that a photon can take to cross the entire 

field of view (FOV). 

 

http://en.wikipedia.org/wiki/Photodetector
http://en.wikipedia.org/wiki/Photomultiplier
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Figure 2.1a: Types of coincidence events (depicted in axial view): Scatter (S), random 

(R) and true (T) coincidences. 

 

As illustrated in figure 2.1, three types of coincidence events are detected by the 

tomograph: True, scatter and random.  If two photons created from the same annihilation 

event reach their respective detectors without being scattered, then a true coincidence is 

recorded.  True coincidences are the events of interest since their count rate is 

proportional to the regional radioactivity concentration.  If either or both photons are 

scattered while crossing the FOV; then a scatter coincidence can be detected.  Scatter 

coincidences carry incorrect positioning information since the photon paths are no longer 

collinear.  Due to the limited energy resolution of scintillators, many scattered photons 

successfully pass through the pulse processing unit.  Even though the scattered photons 

travel an extra distance, they are not sufficiently delayed to fall outside the coincidence 

time window.  A random coincidence occurs when two photons that originated from two 

different annihilation events are detected within the coincidence time window.  The count 

rate of the random coincidences is proportional to the product of the count rate in the two 

individual detectors (singles), with the constant of proportionality given by the 

coincidence time window.  Therefore, the random count rate increases faster than the true 
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count rate with increasing radioactivity in the FOV, but can be reduced by shortening the 

coincidence time window.  More than two photons can strike the detectors within the 

coincidence time window.  Even though these multiple coincidence events are not 

recorded, in most cases, they can prevent the detection of true coincidences while being 

processed (see Corrections for High Count Rates below).  

 

Detection Geometry 

The most common design for PET cameras makes use of the cylindrical geometry 

by stacking together individual rings of detectors.  In the two-dimensional (2D) 

acquisition mode, annular septa are inserted between rings to shield most coincidence 

events that occur between non-adjacent rings.  Coincidence events detected within the 

same rings form direct planes, whereas those detected between adjacent rings define 

cross planes.  This configuration minimizes the detection of out-of-plane random and 

scatter coincidences. Removing inter ring septa eliminates physical collimation in the 

axial direction, thus allowing for more oblique coincidence events to be detected.  The 

expansion to the three-dimensional (3D) acquisition mode increases the tomograph 

overall sensitivity to true coincidences, but also to random and scatter coincidences from 

both inside and outside the FOV (Cherry, 3
rd

 edition). 

 

Data Sampling 

The near simultaneous detection of a pair of annihilation photons represents one 

event or count in the image.  The line joining two detectors is called a line of response 

(LOR).  An LOR represents the line integral through the radioactivity distribution 

connecting a given pair of detectors.  All parallel LORs correspond to a projection of the 

radioactivity distribution.  Multiple projections are obtained by rotating the set of parallel 

LORs.  In 2D mode, an LOR, can thus be described by a radial distance xr, from the 

center of the transaxial FOV and a projection angle θ.  The number of events in each 

LOR is stored in a bin or element (xr, θ) of a matrix called sinogram.  The term sinogram 

is derived from the observation that a point source located off-center in the FOV traces a 

sine wave in the matrix of LOR values. In 2D mode, a sinogram is generated for each 

(direct and cross) plane.  In 3D mode, a sinogram is generated for each ring pair.  When 
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the sinograms are sparse matrices as is often the case in 3D mode, it becomes 

advantageous to store the data on an event-by-event basis called list mode.  Information 

on the pair of detectors corresponding to the coincidence event together with the time of 

the events is recorded as the events are detected: and sorted into sinograms later once the 

data acquisition is completed. 

 

2.1.1.3 Corrections 

 

Not all annihilation events are detected as coincidence events. And not all 

coincidence events carry accurate positioning information.  Corrections thus need to be 

applied to the total coincidence events in order to restore the linear relationship with the 

radioactivity concentration before recovering the radioactivity distribution. 

 

High Count Rates 

It takes a minimum time for a detection system, comprising the detector itself and 

the associated electronics; to generate and process an electronic pulse.  If more than one 

event is detected within that time, called dead time, pulses are lost or distorted.  The 

probability of losing an event is always present in PET because of the random nature of 

radioactive decay, but becomes increasing significant at higher count rates.  The large 

number of detectors and the complexity of the pulse processing and recording electronics 

render the modeling of the dead time behavior difficult (Moisan, 1997).   Instead, a more 

ad hoc method is used to correct for dead time losses.  The count rate response of the 

tomograph is characterized by counting a high activity source of known strength over 

several half lives.  When a source of unknown activity is subsequently measured, the true 

source activity is obtained by interpolating the count rate response curve. 

At count rates just below saturation of the detectors, the count rate is dominated 

by random coincidences.  As the count rate decreases, a greater proportion of the count 

rate is attributed to true coincidences.  Two methods are commonly used to estimate 

random events. If the coincidence time window is known accurately, the random 

coincidence rate can be calculated from the singles count rates at a pair of detectors.  

Alternatively, the random coincidence rate can be measured by introducing a variable 
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delay in one branch of the coincidence unit.  The arrival times of the true (and scatter) 

events fall within the coincidence window, whereas the arrival times of the photons 

associated to random events are uniformly distributed in time and the number of random 

events is approximately equal from one coincidence window to the next.  The delay is 

first adjusted such that the centre of the coincidence time window is aligned with the true 

(and scatter) coincidence peak; and all three types of coincidences are measured.  The 

delay is then changed such that the coincidence time window is moved away from the 

peak and only random coincidences are measured (figure 2.1 b). Whether the random 

coincidences are calculated or measured, they are subtracted from the total coincidences.  

The singles method is more precise because the singles rates are much higher than the 

coincidence rates.  Unlike the singles, the delayed coincidences are measured under the 

same conditions of dead time as the true coincidences, making the delayed window 

method more accurate (Casey and Hoffman, 1986). 

 

 

 

 

 

 

 

 

 

Figure 2.1 b. Prompts and random coincidence windows with a window size ±τ 

If not corrected for, the effect of dead time is an underestimation of the radioactivity 

concentration in the reconstructed PET images whereas that of random coincidences is an 

overestimation (Hoffman, 1981).  In dynamic PET studies, where the source activity in 

the FOV varies with time due to changes in the bio-distribution of the radiotracer and 

radioactive decay, the recovery of the count rate linearity between true coincidences and 

source activity is crucial. 
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Photon Attenuation and Scatter 

Most annihilation photons emitted inside the body are scattered or absorbed on 

their way out.  The probability Pi that a photon does not interact as it propagates through 

tissues is given by 











−= ∫

l

Pi µ(x)dxexp                                                      (2.2) 

where µ(x) is the linear attenuation coefficient.  The integral is evaluated along a path l 

defined by the pair of detectors i (located at a given distance x, from the center of the 

projection at a given angle θ).  Since a pair of annihilation photons undergoes the same 

attenuation regardless of the origin of the annihilation event along the path, PET data can 

be corrected for attenuation before reconstruction, i.e. without knowledge of the 

radioactivity distribution. 

A map of the survival probabilities can be obtained from two separate scans using 

an external radioactive source which is rotated about the center of the FOV.  Prior to 

injection of the radiotracer, a transmission scan is performed while the subject is lying 

inside the tomograph.  These data provide an estimate of the attenuated flux of photons 

(Ti) along each path.  Under the same conditions as the transmission scan, a blank scan is 

acquired without anything in the tomograph.  These data give an estimate of the incident 

flux of photons (Bi) along the same paths.  The survival probabilities are approximated 

by the ratio of the two maps: 

      
Bi

Ti
P ~ˆ                                                                 (2.3) 

 

When obtained using a positron emitting source (
68

Ge/
68

Ga), these estimates are noisy 

because the source strength must be kept low in order not to saturate the detector close to 

the source.   This problem can be overcome by using a source emitting γ -rays of energy 

close to 511 keV (662 keV for 
137

Cs) and sequentially switching off the detector close to 

the source.  Corrections must be made for the diameter difference between the detector 

ring and the source orbit (DeKemp and Nahmias, 1994), and for the energy difference of 

the linear attenuation coefficients (Yu and Nahmias, 1995).  For comparable statistics; the 

singles method is ten times faster than the coincidence method (Karp, 1995).  The noise 
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propagation from the measured attenuation map to the emission data can be eliminated by 

segmenting the attenuation map and assigning theoretical values of linear attenuation 

coefficients to the corresponding anatomical regions (Xu, 1994). 

 

The fraction of scatter coincidences is approximately 10-15% of total 

coincidences in 2D mode, but rises to 30-50% in 3D mode.  The scatter fraction can be 

estimated using an analytical model of the radiation transport through an object from 

emission to detection (Watson, 1996; Ollinger, 1996).  Given the attenuation map, a 

physical description of the tomograph and an initial estimate of the radioactivity 

distribution, the algorithm simulates the number of single scatters.  The multiple scatter 

contribution can be modeled empirically from the single scatter distribution (Ollinger, 

1996).  Because of the presence of scatter in the preliminary emission image, the 

algorithm is run iteratively, correcting each time the estimate of the radioactivity 

distribution using the improved scatter estimate.  This method fails to account for 

radioactivity outside the FOV since information is only available from inside the FOV.  

For brain PET studies, the scatter fraction can also be inferred from measurements of 

coincidence events made in a second lower energy window in addition to the photopeak 

window (Grootoonk, 1996).  A scaled subtraction of the two energy windows yields the 

number of scatter events in the upper energy window.  This method offers the advantage 

of correcting for scatter events originating from radioactivity outside the FOV. 

Mismatches between the true and assumed attenuation correction factors, e.g. due 

to subject movement, lead to image artifacts, particularly at the boundary between tissue 

of different densities, and to inaccurate estimates of the radioactivity concentration across 

the PET images (Huang, 1979).  Residual scatter coincidences degrade the spatial 

resolution in the PET image by transferring radioactivity from high to low radioactivity 

regions (Watson, 1996). Whereas scatter correction can be omitted in 2D mode or 

compensated for by adjusting the linear attenuation coefficients; it is essential in 3D 

mode in order to obtain quantitative PET images. 

 

Non-Uniform Detector Response 
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The detection efficiency of annihilation photons varies not only from block 

detector to block detector, but also across the elements of a block detector, depending on 

the location of the energy deposition in the crystal and the incidence angle of the photon.  

The detection efficiency of crystal elements located in the center of the block detector is 

higher than those located on the edges.  Because Compton scattered photons have lower 

energies and more oblique incidence angles than unscattered photons, the detection 

efficiency is also different between the two types of coincidences (Ollinger, 1995).  

These differences are exacerbated in 3D mode with the larger scatter fraction and the 

wider range of acceptance angles than in 2D mode. 

 

Normalization can be approached from two directions. In the direct method, a 

uniform low activity source illuminates sequentially all LORs.  The measured data are 

inverted to provide an efficiency value for each LOR.  Given the very large number of 

LORs in 3D mode, the acquisition time required to obtain good counting statistics for 

each LOR is prohibitively long.  Component-based models of increasing complexity 

(Hoffman, 1989; Bailey, 1996; Badawi and Marsden, 1999) have been proposed along 

with measurement protocols in order to determine the main factors contributing to the 

efficiency separately.   This indirect method allows for the effects of the individual 

factors to be investigated.  Failure to correct for the differential detector response and 

geometric effects creates artifacts in PET images of a uniform cylindrical phantom - 

ranging from the addition of high frequency noise  to low frequency characteristic 

(transaxial and axial) patterns - that can lead to severe quantification errors in the 

radioactivity distribution (Badawi and Marsden, 1999). 

 

The number of annihilation events Ni originating from photons emitted at a given 

angle can be expressed as a function of the number of total coincidences Yi, recorded in a 

pair of detectors i by combining the above described corrections in the appropriate 

sequence as summarized in the following equation (Ollinger and Fessler; 1997): 
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where di is the probability of an event being lost due to dead time, Pi is the measured 

survival probability as previous defined (equations (2.2) and (2.3)), ηi are the detection 

probabilities of a true (superscript t); random (superscript r) or scatter (superscript s) 

events, and Ri and Si are the estimated number of random and scatter coincidences.  Note 

that the corrections for dead time, detector efficiency and photon attenuation are 

multiplicative while those for random and scatter coincidences are subtractive. 

 

2.1.1.4 Signal Localization: Image Reconstruction 

A pair of annihilation photons striking two opposite detectors connected in 

coincidence carries the information that an annihilation event occurred somewhere along 

the LOR. The point of origin of the annihilation event is inferred back by combining 

multiple LORs 

 

2D Filtered Backprojection (FBP) Algorithm 

In 2D mode, a projection p(xr, θ) corresponds to a line integral at an angle θ and at 

a distance xr, from the center of the FOV through the unknown radioactivity distribution 

λ(x,y) 

 

               r

l

dyyx ),( ,p(x r ∫= ) λθ                                                       (2.5) 

where (xr, yr) is the coordinate system (x,y) rotated by an azimuthal angle θ. Equation 

(2.5) describes the forward projection operation of the PET data acquisition process. The 

backprojection operation, given by equation (2.6), is the adjoint to the forward projection 

operation. 

             

                                                     θθ dxpyxb r∫
Π

=
0

),(),(                                                 (2.6) 

where b(x,y) is the backprojected radioactivity distribution.  Back projecting basically 

consists of assigning the value of the line integral to all the points that fall on the path of 

the line integral, and repeating this operation for all line integrals.  Using the central-
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section theorem which states that the 1D Fourier transform (Fl{}) of a projection at an 

angle θ is equivalent to a line through the origin of the 2D Fourier transform (F2{}) of the 

original radioactivity distribution, the filtered backprojected radioactivity distribution can 

be calculated as 

 

         ∫
Π

⊗=
0

)](1),([),( θθλ dxhxpyx rr                                  2.7a) 
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1

1∫
Π

−
=                                 (2.7b) 

 

where )(1 rxh = { }||
1

1 xrvF
−

 is the 1D filter kernel, and || xrv  is the ramp filter arising from 

the change of variables from rectangular to polar coordinates (the Jacobian of the 

transformation).  In practice, the projections are sampled at discrete intervals ∆xr, setting 

the maximum recoverable frequency to Nyquist frequency vmax= (2∆ xr,)
-1

.  Furthermore, 

the projections are contaminated by high frequency noise which can be attenuated by 

multiplying the ramp filter with an apodizing window that rolls off the higher frequencies.  

A 3D volume image can then be formed by separately acquiring and reconstructing a set 

of 2D cross-sectional images, and stacking them together. 

 

3D Reprojection (RP) Algorithm  

Since the set of projections acquired in 2D mode is sufficient to reconstruct a 3D 

image, the additional projections collected in 3D mode provide redundant data that can be 

used to improve image variance.  However, the finite axial extent of the PET scanner 

hinders the measurement of the complete set of projections in 3D.  Kinahan and Rogers 

(1989) proposed to reconstruct the 3D volume image in two steps.  First, reconstruct with 

the 2D FBP algorithm a first-pass image λ2D(x,y,z) from the subset of direct projections 

corresponding to the complete set of projection acquired in 2D, and use this image to 

forward project in 3D the missing projections.  Then, reconstruct with the 3D FBP 

algorithm a second pass image λ (x,y,z) from the merged set of measured and estimated 

projections in 3D.  The 3D FBP algorithm is simply the extension of the 2D FBP 
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algorithm to one more dimension with the ramp filter being replaced by the Colsher filter 

(Colsher, 1980).  This procedure is equivalent to extending the axial FOV of the PET 

scanner by adding virtual rings of detectors (Defrise, 1990).  Image variance increases 

from the center to the periphery of the axial FOV, reflecting the axial variations in the 

tomograph sensitivity (Kinahan and Rogers, 1989).  To restrict noise amplification, the 

Colsher filter can be multiplied by a 2D apodizing window. 

 

Rebinning Algorithms 

The time it takes to reconstruct a 3D volume image using the 3D reprojection 

algorithm is more than an order of magnitude longer than that to reconstruct the subset of 

direct projections using the 2D FBP algorithm (Defrise, 1997).  If the 3D PET dataset, 

could he sorted or rebinned into a 2D dataset prior to reconstruction, the high sensitivity 

of the 3D acquisition mode could be combined with the fast computational speed of the 

2D reconstruction algorithm to yield low variance images in short times.  A number of 

rebinning algorithms have been developed for 3D PET data, e.g. the single-slice 

rebinning (SSRB) algorithm (Daube-Witherspoon and Muehllehner 1987; Erlandsson, 

1994), the multi slice rebinning (MSRB) algorithm (Lewitt et al; 1994), and the 

approximate and exact Fourier rebinning (FORE and FOREX) algorithms (Defrise, 1995; 

Defrise et al, 1997), with varying degree of accuracy and computational speed. 

 

Iterative Reconstruction 

The FPB methods ignore the discrete nature of the data and the measurement 

noise, and further amplify (via the ramp and Colsher filters) the noise in the reconstructed 

PET images.  In contrast, iterative reconstruction algorithms are based on models of the 

PET data acquisition process, incorporating the tomograph physical characteristics as 

well as the Poisson distributed measurement noise.  The radioactivity distribution λ (x) 

can be discretised into a finite set of basis functions bj(x), usually voxels:  

∑
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In the reconstruction, Θ = (θj) are the unknown coefficients that must be computed from 

the comparison between the measured projection data Yi and the model predictions 

Yi(Θ): 

∑
=

+++=Θ
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iiijij ersaYi
1

)( θ                                               (2.9) 

 

where 

( )∫= dxxbxpdiTa jiij )()(                                                      (2.10) 

 

 Equations (2.9) and (2.10) are simply equation (2.4) rewritten in terms of counts over the 

scan time T (rather than count rates) and to which a term for measurement errors ei was 

added.  The point response of the detector pair pi(x) now combines the measured linear 

attenuation coefficients and detector (intrinsic and geometric) efficiency estimates, and 

represents the probability of a photon emitted at 1ocation x to be counted in detector pair 

i.  Although a non-trivial problem, the system matrix A = {aij} offers the possibility of 

accounting for the detector dimensions and the positron range in the reconstruction 

process.  The random ri and scatter si, counts are estimated independently and 

incorporated into equation (2.9).  Given the linear form of the model and measurement 

errors distributed as independent Poisson noise, the unknown coefficients can be 

estimated by maximizing the log-likelihood L(Θ) defined as: 

                                   ( )∑
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Finding the maximum of equation (2.11) is a non-linear problem which is solved 

iteratively.  The computation time for each iteration is comparable to that of the 3D RP 

method, and the number of iterations depends on noise in the projection data. Several 

algorithms have been developed in order to limit the number of iterations required to 

reach convergence.  The problems of slow convergence and image noise can be 

overcome by adding priors and replacing the log-likelihood criterion by a penalized-

likelihood objective function where a measure of the image roughness (the penalty 

function) can be adjusted (with Bayes weights). Regularization can also be accomplished 
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by filtering at different stages on the reconstruction.  However, these modifications can 

introduce non-uniformities in the spatial resolution and the noise variance in the 

reconstructed PET image (Ollinger and Fessler, 1997). 

 

2.1.2 Image Characteristics 

 

PET images are noisy and offer poor tissue delineation compared to detailed 

anatomical images.  For a given signal, improvement in the image variance is usually 

achieved with a concomitant degradation of the spatial resolution. 

 

2.1.2.1 Signal-to-Noise Ratio 

 

The noise in the projections is independent and Poisson distributed since it 

originates from counting radioactive sources.  After reconstruction, the noise in the PET 

images is correlated via the point spread function.  The noise equivalent count rate (NEC) 

attempts to relate the image signal-to-noise ratio (SNR) to the scatter S, random R and 

true T coincidence rates (Strother, 1990) via 
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where SF is the scatter fraction SF = S/(S + T), ignoring the deadtime and attenuation 

corrections. Setting S = R = 0 in equation (2.12) shows that the NEC can be interpreted as 

the reduced true coincidence rate which, without random and scatter coincidence events, 

would produce the same SNR as the true coincidence rate obtained after subtracting 

random and scatter coincidence rates from the total coincidence rate (Strother et al, 1990). 

The spatial noise distribution in the PET images is also influenced by the 

attenuation and emission distributions and by the reconstruction method.  When the PET 

images are reconstructed with 3D reprojection algorithm, the noise distribution is uniform 

for a homogeneous or heterogeneous radioactivity distribution and homogeneonsly 
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attenuating media like in the brain.  The image variance can then be considered to be 

similar throughout the image, and mostly dependent on the count rate.  This 

approximation no longer holds in the presence of heterogeneously attenuating media like 

in the chest, where the noise distribution becomes non-uniform (Pajevic, 1998).  By 

definition, the image variance is strongly dependent on the radioactivity distribution 

when the PET images are reconstructed using an iterative reconstruction algorithm.  

 

2.2 Compartmental Modeling  

 

 Image reconstruction in conjunction with the appropriate corrections to the 

measured projection data yields quantitative measures of a PET radiotracer’s spatial 

radioactivity distribution within the body.  This distribution is time varying and depends 

on a number of factors such as tracer delivery, binding to cell surface receptors, diffusion 

or transport into cells, metabolism ,washout from the tissue and excretion from the body.  

Dynamic sequences of PET measurements enable radiotracer concentration to be 

measured as a function of time. With an understanding of the biologic fate of the 

radiotracer in the body, it is possible to construct mathematical models with a set of one 

or more parameters that can be fit to explain the observed time activity curves. This 

analysis process is called tracer kinetic or compartmental modeling 

 

2.2.1 Concepts of Compartmental Modeling 

 

Biologic systems can be represented or modeled as a collection of compartments, 

sometimes referred to as pools or spaces, linked by kinetic processes that provide a 

mechanism of exchange of tracer between adjoining compartments.  A compartmental 

model is a model consisting of a finite number of compartments with specified 

interconnections among them.  A compartment is an amount of material that acts as 

though it is well-mixed and kinetically homogenous.  It may represent a distinct physical 

space or chemical form or pharmacologic state of the radiotracer that occupy the same 

physical space. 
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 Various compartments of a kinetic model are linked by a set of parameters called 

rate constants (k). It is a proportionality constant and links the amount of tracer exiting a 

compartment to the amount of tracer in the compartment.  First order rate constants have 

the units of inverse time.  Second order rate constants have units of inverse concentration 

and inverse time, etc.  The concentration of the enzyme is so high in relationship to the 

tracer concentration that the kinetic equation is sometimes a pseudo first order, for 

example the reaction of [
11

C]deprenyl with the enzyme MAO B.  The inverse sum of all 

first order rate constants is called the turnover time of the compartment.  

  In the standard representation of compartmental systems, a box is used to 

represent a compartment and an arrow for the transfer of material into or out of that 

compartment.  The amount or concentration of radiotracer in the model compartments 

can be described as a function of time by a set of first-order differential equations in 

terms of the model parameters.  Mathematically, the exchange of material between 

compartments is expressed as a system of mass-balance equations in which the rate of 

change in the amount of material in each compartment is equal to the difference between 

the amount of material entering and exiting that compartment. 

 

2.2.1.1 Theory of Linear Compartmental Systems with Constant Transfer Coefficients 

 

A typical PET data set contains the time course of radioactivity concentration, or 

time-activity curve (TAC), in plasma and in various tissues, measured after the injection 

of a radiotracer.  The tissue TACs constitute the measured output of a system probed by 

an exogenous input, the plasma TAC.  The purpose of making these measurements is to 

quantify the characteristic response of the physiological system given these input and 

output data. 

Using mass balance differential equations, the description of a general n-

compartment model is:  

( )
( ) ( ) ( ) ( )∑∑

≠≠

++−−=
ij

ijij

ij

ijiii
i tutmktmktmk

dt

tdm
0            (2.13) 

where im (t) and jm (t) are the amount of material in compartments j and i 

respectively, and kji is the rate constant for the transfer of material from compartment i to 



 26

compartment j.  The term ui(t) is the rate at which material enters compartment i from the 

outside whereas –k0imi(t) is the rate at which material leaves compartment i to the outside.  

If the rate constants k's are independent of the time interval (stationary assumption) and 

the conjugate m's (linearity assumption), equation (2.13) becomes a first-order linear 

differential equation with constant coefficients.  In matrix form; equation (2.13) can then 

be rewritten as 

                                            ( ) ( )tutKmm +=&             (2.14) 

 

where K is called the compartmental matrix and  ∑
≠

−−=
ij

jiii kkk 01 . 

 

If u(t) = 0: the solution to the system of n homogeneous differential equations is 

the sum of the n linearly independent exponential functions m(t) = v exp(λ t), of equation 

(2.14): 
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iivctm                                                        (2.15) 

where n is the number of compartments. The λ's are the system eigen values which are 

the non trivial solutions to the characteristic polynomial (K - λ I)v = 0, where I is the 

identity matrix.  The vs are the corresponding system eigenvectors and each is found by 

solving the equation Kvi = λ ivi.  The constants ci's are determined by the initial conditions. 

When the initial conditions are set to mi(0) = 1 and mj≠i = 0 for j = 1,2, ... n, equation 

(2.15) represents the characteristic impulse response of the system.  

 

Most often in PET, the compartments are not measured individually, but instead 

only the sum of the compartments of the system is available.  From the theory of linear 

differential equations, the solution of compartmental model equations when the kij are all 

constant and the input into the system is a single bolus injection in an arbitrary 

compartment is a sum of exponentials.  
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where the macro parameters Ai and λi are a combination of the microparameters kji. The 

number of microparameters must be less than or equal to the number of macroparameters 

(2n = nA's + nλ‘s) in order to uniquely identify the microparameters (Cobelli and 

DiStefano, 1980).  Otherwise, either certain k's must be set to zero or some estimation 

strategy (like including a priori information or performing additional independent 

measurements) must be adopted in order to reduce the number of microparameters to be 

determined (Cobelli and DiStefano, 1980; Landaw and DiStefano, 1984).  Identifiability 

of all microparametcrs does not however guarantee a unique solution (Cobelli and 

DiStefano, 1980).  

 

2.2.2 Input Function  

 

If the tracer is introduced in the system of interest as an impulse-bolus, the 

measured tracer activity as a function of time will be a sum of exponential components.  

This sum of exponentials is usually called the impulse response function of the system.  

The number of exponential components in the response function is equal to the number of 

compartments in the model.  

When the input function is not an impulse, the measured tracer quantities will be 

the convolution of the input function with the response function of the system.  The 

radiotracer for PET studies is injected into the blood stream such that the time course of 

radioactivity concentration in arterial plasma represents a time varying input function, 

ui(t), to the system.  

 

            ( ) ( ) ( ) `)exp()(
0

1
∫ ∑

=

⊗=−=
t n

i

iiiti tAtudtqtuty λττ                       (2.17) 

 

The convolution is a direct result of the linearity of the compartmental models.  

Not many physiological processes are linear, but because the amount of tracer introduced 
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is always very small as compared to the natural substance, the transport or chemical 

transfer of tracer usually can be considered as linear.  Measurement of the input function 

allows it to be deconvolved from the tissue tracer curve to yield the impulse response of 

the tissue. This impulse response reflects kinetic process in the tissue without interference 

from effects in the rest of the body.  

The input function is typically measured by sampling blood from the radial artery, 

fairly rapidly initially and at longer time intervals as the PET study continues.  The blood 

data acquired in this way are inevitably distorted by delay and dispersion between the 

points of radiotracer assay and delivery to tissue (Meyer, 1989).  For radiotracers with 

kinetics slower than blood flow, these effects can be accounted for by the inclusion of a 

delay (At) and a blood volume (Vb) term in the equation of the compartmental model: 

 

   ( ) ( ) ( )ttuVtqttuty ibti ∆+×+⊗∆+= )(                                     (2.18) 

 

When the blood and tissue data are acquired with different devices, these must be 

cross calibrated such that the units of the input function and the tissue TAC are the same. 

This can be achieved by preparing a phantom and an aliquot from the same solution and 

measuring their respective radioactivity concentration in the PET camera and in the 

radiation detector used to measure the blood concentration.  Alternatively, each device 

can be calibrated against a third device that has previously been calibrated with a 

standard radioactive source. 

Additional measurements are required when the radiotracer is compartmentalized 

in the erythrocytes and/or metabolized in peripheral tissue.  The effect of the former is to 

reduce the availability of the radiotracer to cross the blood-brain barrier.  The effect of 

the latter is to transfer the radiolabel to molecules other than the injected radiotracer. The 

partition of radioactivity between plasma and erythrocytes can be corrected for by 

measuring the radioactivity concentration in both plasma and whole blood. The 

contribution of the metabolites to the total plasma radioactivity can be separated from 

that of the unmetabolized parent using analytical chemistry procedures, most commonly 

high pressure liquid chromatography (HPLC) analysis.  Unlike whole blood which can be 

sampled continuously and counted on-line, the measurements for the determination of 



 

blood partition and peripheral metabolism can only be performed at a few discrete times.  

Interpolation and extrapolation of these corrections over the duration of the PET study is 

therefore necessary.  

 

2.2.3 Enzyme Kinetics 

 

Enzymes are proteins that catalyze biochemical reactions.  They are specific to both 

the binding substrates and the catalyzing reactions.  In general, enzymes take the name of 

their substrate, followed by a word ending in -ase that specifies the type of reaction.  The 

catalytic activities of many enzymes are regulated in two ways: The enzyme availability is 

determined by both its rate of synthesis and its rate of degradation, and the enzyme activity is 

controlled by alteration in the binding-substrate affinity.  The binding affinities of substrates 

and inhibitors to an enzyme; the maximum catalytic reaction rate of an enzyme, and 

ultimately the amount of enzyme present can be inferred from the study of enzyme kinetics 

(Voet and Voet, 1995). 

 Most chemical reactions in living tissue are enzyme catalyzed reactions. 

Generally, they can be represented as 
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where C0 is the total enzyme concentration.  This equation is known as Michaelis-Menton 

equation and variable Vm and Km that characterize the equation are called Michaelis-

Menton constants.  Vm is maximum velocity of the reaction because it is the fastest rate 

possible for a given enzyme concentration. Km is called half saturation concentration and 

is equal to the concentration of A that would produce half the maximal rate. (Voet and 

Voet, 1995) 

 Now, suppose a tracer A′ is similar to A in its reaction with the enzyme E, i.e.  

  

A +E            AE            P + E, 

 

A ′+E            A′E            P′ +E 

If the association and dissociation rates of the substrate-enzyme complex are 

much faster than the rate of variation in the concentration of A′, the conversion fluxes 

from A and A′ to P and P ′ are  
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where V′m and K′m are Michaelis-Mentom constants of the enzymatic reaction for the 

tracer A′.  If A′ satisfies the tracer requirement that its concentration is much smaller than 

that of A (i.e. [A′]<<[A]), then the above equations can be written as  
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dividing R′/R,  
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The equation for the natural substrate is the same as the one without the tracer added, 

because the tracer A′ has low concentration and is assumed to have a negligible effect of 

steady state condition of the reaction.  This equation is similar to the natural substrate 

except that it is linear with respect to the concentration of the tracer.  This is a critical 

relationship as far as tracer kinetic modeling is concerned.  It is the fundamental basis for 

modeling enzyme catalyzed reactions with linear models. 

 

2.2.4 Compartmental Models  

 

 General models for description of tracer distribution are described below. Cp 

represents the plasma concentration of labeled tracer. CF is the free concentration of the 

tracer in tissue CNS.  K1 and k2 are the ligand transport constants, plasma to tissue and 

tissue to plasma respectively.  Units of K1 are (ml tissue) (ml plasma)
-1

 min
-1

 so that the 

product K1Cp(t) gives the rate of influx of the radiotracer to the first compartment, the 

input function. 

K1 and k2 are functions of blood flow and the permeability surface area  

A one-compartment two rate constant is shown in figure 2.2. This model is 

typically used for reference tissue, i.e. tissue in which no specific binding or metabolism 

of the tracer occurs.  

( ) ( )tCKtCk
dt

dC
pNS

NS
12 +−=                  (2.22) 

Integration yields 

    tkCtC NSNS 2exp)0()( −=  

Solving for initial condition )0(NSC =1 

    )exp()( 2tktCNS −=  

Convolving with the input function yields  

)()exp()( 12 tCKtkty P⊗−=                                           (2.23) 

 

 A two-compartment four rate constant model is shown in figure 2.3. This model 

adds a specifically bound tracer, Cs.  
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Figure 2.4 demonstrates a case where the binding is irreversible on the time scale 

of the experiment. This is a commonly used model for receptor binding, and the 

differential equations are given by equations 2.24 and 2.25.  

            

  s

BNSon

NS
NS

CkNLBfkCktCpK
dt
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1 )()( +−−−−=                  (2.24) 

     s
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S
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2 )( +−−=                                                 (2.25) 

 

The assumption implicit in the model of specific binding is that the receptor occupancy is 

unchanged during the course of the experiment. k3 is given by k3=fNSkon(Bmax-Nb-L)  

where  Bmax is the total receptor/transporter concentration,  NB is the endogenous 

neurotransmitter concentration.  L is the concentration of unlabeled ligand bound to 

receptors. 

                             

Figure 2.2: One compartmental model  

     

 

Figure 2.3: Two compartmental model, Reversible 
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             Figure 2.4: Two compartmental model, Irreversible 

 

2.2.5 Parameter Estimates 

 

The application of compartmental modeling can be divided into three separate 

steps (Jacquez, 1988).  

1) Developing plausible models which should be based on background knowledge of 

the system under study and the chosen structures should lead to a physiological 

interpretation of the model parameters. 

2) Formulating and solving the equations that predict the behavior of the system. 

These first two steps constitute the forward problem and are treated in the 

previous sections.  

3) Finding the parameter estimates and the plausible model that best describe the 

collected data. This is an inverse step and is addressed in this section 

 

2.2.5.1 Non-Linear Least-Squares Analysis 

 Let us assume that the only source of deviation between the measurements z(t) 

and the model predictions y(t, p) is random measurement errors e(t):  

)(),()( teptytz +=                                                  (2.26) 

 

Let us further assume that ei(t) are independent and Gaussian distributed with zero mean 

and variances σi
2
. The least-squares method then tries to find an estimate of p( p̂ ) that 

minimizes the weighted residual sum of squares (WRSS) between the N measurements 

z(t) and model predictions y(t):  

k3 
  K1 

Cp C1
NS C2

S 

 
k2 



 34

  ∑
=

−=
N

i

iii ptytzwpWRSS
1

2)]ˆ,()([)ˆ(                                    (2.27) 

  

where the weights are set to wi = 1/σi
2
.  Data points having the smallest associated errors 

are given the greatest relative importance in the least-squares estimation procedure. 

Equation (2.27) has a unique minimum when the model y(ti, p) is linear in all its 

parameters p. However, equation (2.16) is linear in the parameters Ai but non-linear in the 

parameters λi. Multiple minima can thus exist, and an iterative search of the parameter 

space does not guarantee finding the absolute minimum.  Furthermore, starting values for 

p are required which influence both the number of iterations and the minimum (local or 

absolute) found.  It is recommended to guide the search procedure by imposing boundary 

conditions on the values of p, in particular that the values of kji must be non-negative or 

those of λi non-positive (Landaw and DiStefano, 1984). 

 

Precision on the Parameter Estimates 

The standard error (SE) on the estimate ip̂  can be calculated by taking the square 

root of the i
th

 diagonal element of the covariance matrix COV (Landaw and DiStefano, 

1984) which is defined as 

   211 ˆ)()ˆ,( σ−−= JWJptCOV T                                             (2.28) 

 

where J is the Jacobian matrix with elements jij = & for i = 1,2, ... N data points and j = 

1,2, ... P parameters, and W is the diagonal matrix with elements wi.  When σ
2
: is 

unknown, the unbiased estimate 2σ̂  = WWRSS( p̂ )/(N - P) can be used.  The i,j
th

 

element of the covariance matrix corresponds to the covariance between the two 

parameters ip̂  and jp̂ .  The correlation coefficient, which takes values between -1 and 1, 

can also be derived from the covariance matrix by dividing the i, j
th

 element by the 

product SE( ip̂ )SE( jp̂ ). 

 

Strong correlations between parameters and poor precision on parameter 

estimates are signs that the covariance matrix is ill-conditioned (Landaw and DiStefano, 
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1984).  This problem can result from a poor experimental design.  The data sampling 

must be long and frequent enough to capture the full dynamic range of the model.  

Otherwise, two exponential terms that are close but distinct will not be distinguished.  Ill-

conditioning of the covariance matrix can also be caused by over-parametrization, i.e. 

fitting the measurements to a model of order n + 1 when the system should really be 

modeled with n compartments.  The least squares method then attempts to separate two 

exponential terms that have indistinguishable λ’s and for which only the sum of the 

corresponding A's can be estimated precisely. Confirmation of this diagnosis can be 

obtained with statistical tests.  

 

Discrimination amongst compartmental models 

Models of increasing order can sequentially be compared by performing an F-test 

under the null hypothesis that the model of order n+1 does not give a better fit to the 

measurements than the model of order n (Landaw and DiStefano, 1984):  
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The F distribution has (Pn+l, - Pn,, N - Pn+I) degrees of freedom where again Pi is 

the number of parameters in model i and N is the number of data points.  When the 

probability of obtaining a larger F value is no longer significant, the lower-order model is 

accepted as the best model in a statistical sense.  It is then usually symptomatic to find, in 

the higher-order model, one value of Ai that cannot be distinguished from zero within its 

SE. 

 

2.2.5.2 Measures of receptor availability  

 Composite parameters such as binding potential (BP) (Mintun et al. 1984), the 

total tissue distribution volume (DV), the distribution volume ratio (DVR) (the ratio of 

the DV of a receptor region to that of a reference region without the receptor), an 

effective binding potential derived born the DVR or a difference between the receptor 
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DV (DVRO1) and the DV of the reference region (DVREF) are sometimes used instead of 

individual model parameters. The binding potential is defined as  

      
dK

B
BP max=                                                              (2.29) 

 

The distribution volume is given by the ratio of the tissue to plasma under 

equilibrium conditions, i.e. DV=CROI/Cp, CROI is the tissue concentration of a region of 

interest. Alternatively for on equilibrium experimental conditions, the DV given by  as 
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DV can also be defined by graphical analysis or equilibrium measurement.  

 

The DVR is given by (assuming that the ratio of transport constants is the same 

for both receptor and reference region) 
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Binding potential can then be calculated as DVR-1.  

 

2.2.5.3 Solving Models with measured plasma input function  

 

A. Reversible Compartmental Models 

For one and two compartmental models the linear equations are  
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Where k=k2+k3+k4 

 

To overcome the bias in equation 2.32, Feng et al,(1993) introduced a generalized 

linear least squares (GLSS) method.  
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Graphical Analysis 

Graphical analysis transforms a set of linear equations describing a model into a 

single equation which becomes linear for time t> t* (Logan et al. 1990).  Two parameters 

are determined, the slope and the intercept which are combinations of the model 

parameters.  The graphical analysis equation for points determined by scan times ti is 
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where DV+Vp is the slope for the linear region which occurs for times ti>t* and Vp is the 

contribution of the tissue blood volume.  The condition for linearity of the above is that 

the intercept (int) which for a two tissue compartment model is given by equation below 

is constant.  
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B. Irreversible compartmental models   
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 Irreversibly binding ligands are essentially trapped for the time course of the 

scanning procedure. Information about receptor availability is contained in model 

parameter k3. The three model parameters can be estimated using an optimization 

procedure and solving the differential equations directly. 

A model independent graphical method (Patlak 1983; Patlak, 1985) evaluates the 

rate constant (Ki) for the transfer of tracer from plasma to the irreversible compartment. 

The equation for this is 
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which is linear for the times T>t* when Ve, the distribution volume of the reversible part 

(the ratio of the concentration in the reversible compartment to plasma) is constant.  

Relating this to the two tissue compartment irreversible model, the influx Ki can be 

expressed as  

31

31

32

31

kK

kK

kk

kK
Ki

λ

λ

+
=

+
=                                                       (2.36) 

Ki is expressed in terms of two parameters, K1 which represents the transport of ligand 

from plasma to tissue and the combination parameter λk3 which also contains the ratio of 

transport constants (λ =K1/k2). Although K1 and k2 are functions of blood flow, λ is not. 

 

2.2.5.4 Solving Models without measured plasma input function  

The complications associated with blood sampling and analyses have led to the 

development of reference tissue approaches which use a reference tissue as an indirect 

input, function to the target tissue. 

 

A. Reversible Compartmental Models 

Determining important kinetic parameters without a plasma input function 

requires a reference region, a region devoid of the receptor/transporter or other binding 
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site.  Lammertsma et al. (1996) presented a reference region method assuming the 

reference region could be described by a one tissue compartment model. 

))1(exp()(]1[)()( 22121 BPtktCBPkRktCRtC REFREFT +−⊗+−+=             (2.37) 

 

where CREF and Ct are the concentration in the reference region and total tissue 

concentration.  R1 is the ratio K1 / K1
REF

.  k2, R1 and BP are determined using non-linear 

analysis. Gunn et al revised this equation so that R1 and β are determined by linear least 

square optimization for a set of values of  γ 
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Graphical analysis method is modified such that DVR can be calculated using 

data from a reference region (CREF(t)) with an average efflux constant, 2k  to approximate 

plasma integral.  
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where int’ is int + δ, δ is the error term given by 
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B. Irreversible Compartmental Models 

Patlak and Blasberg (1985) extended the graphical analysis for irreversible 

ligands to an analysis using a reference region in place of the plasma input. It is assumed 

that the reference region has no specific binding so that in the steady state condition 

CREF(t) Cp(t) for t>t* 
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When this is true so that a plot of 
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∫
 is a straight line for ti.> t* with 

slope K’= Ki/(DVREF + Vp’) where Vp’ is the blood volume of the reference region and 

DVREF  is the DV of the reference region. 

 

2.3 PET Radiotracer Mechanisms and Models   

 

Tracer kinetic modeling is used to describe the response of a system and to 

estimate the physiologic and biochemical parameters from the observations. In this 

section three different tracers (used in the course of the thesis for experiments and 

modeling) will be explained. The assumptions for compartmental modeling, biochemical 

data and implementation of the model will be discussed.  

 

2.3.1 
18

F-flourodeoxyglucose (FDG) 

 

The most frequently used tracer for measuring glucose utilization with PET is 
18

F-

flourodeoxyglucose (FDG). The chemical structure of FDG is identical to glucose, except 

that hydroxyl group in the second carbon is replaced by a fluoride atom. This alteration of 

natural glucose results in FDG only tracing the glycolytic pathway through transport and 

phosphorylation to the end product of FDG-6-PO4. FDG-6-PO4 does not leave the cell 

except slow hydrolysis back to free FDG, which can be transported to plasma or 

rephosphorylated.  Figure 2.5 illustrates the transport and reaction pathways of FDG as 

compared to glucose in cerebral tissue.  

A compartmental configuration for FDG model is shown in figure 2.6. The three-

compartment model consists of FDG in plasma, FDG in tissue and FDG-6-PO4 in tissue 

corresponding to comparable concentration of glucose, although glucose continues on to 

metabolism. The first order rate constants k1* and k2* describe the transport of FDG from 

blood to brain and brain to blood, respectively. k3* and k4* describe the phosphorylation 

of FDG and dephosphorylation of FDG-6-PO4. The asterisk * refers to FDG indices and 

corresponding term for glucose do not have asterisk.  



 

       

 

 

 

 

 

 

 

 

 

Figure 2.5: The transport and reaction pathways of FDG as compared to glucose in 

cerebral tissue.  
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Equation 2.41 assumes that k4 and k4* are very small and the forward rate of 

phosphorylation of glucose and FDG approximate the net metabolic rate  

If the ratio of equation 2.41 is a constant  

    

                MRGLc=MRGLc*/constant                       (2.42) 

 

Multiplying equation 2.41 by Cp/Cp*,  
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t

p

p
=            (2.43) 

The ratio Ct*/Cp* and Ct/Cp are defined as partition coefficients for FDG (λ*) and 

glucose (λ). Further dividing left hand side of equation 2.43 by blood flow F,  
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×

×
             (2.44) 

 

This ratio is defined as Lumped constant, LC, for the FDG model. The left side of 

equation 2.44 is the net extraction of FDG (Enet*) divided by the net extraction of 

glucose (Enet). 

 

 
net
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MRGLc is given by (Phelps et al, 1986) 
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Hence, a measurement of cold glucose level in plasma, an assumed value of 

lumped constant an estimates of k1* k2* and k3* from a dynamic sequence of PET scans, 

provide metabolic rate of glucose.  

 

An approximation of MRGLc can be derived from a set of data acquired at a 

relatively late time postinjection due to kinetics of deoxyglucose and FDG. The rate of 

phosphorylation is reasonably high while the rate of dephosphorylation is very low, 

trapping the radiotracer once phosphorylated. The fraction of the radiotracer trapped 

inside a pool increases throughout the study and the clearance from the tissue is relatively 

rapid, hence a single “late” static scan closely reflects the relative metabolic rate of 

glucose. By assuming population average values for the individual rate constants for 

FDG and given a value for cold glucose concentration in plasma, a population average 

MRGLc can be calculated as  
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MRGLcind is then calculated as  
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where 
popmC is the FDG average concentration in the phosphorylated compartment and 

popfC  is the free concentration based on the population averages, 
indtotC is the measured 

PET value of the individual.  

 

2.3.2 [
11

C] Raclopride 

[
11

C]Raclopride is used as a PET research tool to determine dopamine type 2 (D2) 

receptor density under normal and pathological conditions. Raclopride (figure 2.7), a 
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compound of the salicylamide series, is an antipsychotic drug with high selectivity and 

affinity for central D 2-dopamine receptors. It is retained in tissue as a result of binding to 

a neurotransmitter receptor. 

 

 
11

C Raclopride Chemical Structure 

 

Described below are the dopamine metabolism, pathway and importance of 

studying the dopaminergic system using PET radiotracers.  

 

The Brain Dopaminergic System 

Dopamine Metabolism and Pathways 

Two types of cells are found in brain tissues (McGeer et al; 1987): Nerve cells (or 

neurons), which carry the electrical nerve impulse, are interleaved with supporting glial 

cells, broadly divided into oligodendroglia, astroglia and microglia. Neurons are 

composed of a cell body (or soma) from which extend a single long stem (or axon) and 

multiple branches (or dendrites). The electrical nerve impulse is propagated between 

neurons via the transmission of specific chemical messengers (called neurotransmitters) 

across the small cleft separating two nerve terminals, together forming a junction (called 

synapse). In the brain, the transport of substances from capillary blood to tissue is tightly 

regulated. Unlike elsewhere in the body, the capillary endothelial cells overlap and are 

enclosed by sealed astroglial cells together creating a diffusion harrier, the blood-brain 

barrier (BBB). Furthermore, specific active transport systems allow penetration of critical 

substances, amongst others glucose and essential amino acids, against concentration 

gradients. 

Dopamine (DA) is a catecholamine neurotransmitter present in the brain in 

concentrations of nmol/g of tissue (McGeer et al, 1987). It is synthesized in situ from the 
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successive action of tyrosine hydroxylase (TH) on the endogenous amino acid L-

ptyrosine (pT) followed by aromatic L-amino acid decarboxylase (AADC) on L-3,4-

dihydroxyphenylalanine (L-DOPA). DA is packaged into pre-synaptic vesicles by the 

vesicular monoamine transporter (VMAT) where it is protected from further metabolism 

by monoamine oxidase (MAO). Upon stimulation, DA is released into the synaptic cleft. 

From there DA can either bind to post-synaptic dopamine receptors (eliciting an 

excitatory or inhibitory metabotropic action on the Dl like or D2-like receptors, 

respectively), be transformed by the combined actions of catechol-0-methyl transferase 

(COMT) and MA0 into several metabolites (3-methoxy-tyramine (3MTA), 3,4-

dihydroxy-phenylacetic acid (DOPAC) and homovanillic acid (HVA)) which diffuse 

away from the synapse, or be recaptured at the pre-synaptic reuptake site, the dopamine 

transporter (DAT). The synthesis of dopamine is regulated at the tyrosine hydroxylation 

step. Newly synthesized dopamine is preferentially released and metabolized over stored 

dopamine. The turnover time of dopamine in the striatum has been estimated to be of the 

order of 1.5 to 4 hours (McGeer et al; 1987). There are three major dopaminergic 

pathways in the brain (Volkow et al, 1996; McGeer et al, 1987): The nigrostriatal 

pathway originates from cell bodies located in the substantia nigra (in the brainstem) 

which project predominantly to the striatum (in the basal ganglia); cells bodies in the 

ventral tegmental area (in the brainstem) projecting to regions in the limbic system 

(hippocampus, amygdala, nucleus accumbens, cingulated gyrus and frontal cortex) form 

the mesolimbic-mesocortical pathway; the tuberoinfiindibular pathway plays a role in 

coupling the hypothalamus (in the diencephalon) to the pituitary gland (outside the BBB), 

thereby contributing to the stimulation and inhibition of various hormones. Disruption of 

dopamine function in the nigrostriatal pathway, which is involved in the initiation and 

execution of movements, leads to neurological disorders such as Parkinson's disease (PD). 

The mesolimbic mesocortical pathway is associated with mood, reinforcement and 

thought organization, and is implicated in psychiatric illnesses such as schizophrenia and 

substance abuse. The number of dopamine neurons declines with age (McGeer et al, 

1977). Dopamine function can be selectively altered, whether reversibly or irreversibly, 

at different levels using various pharmacological agents. Dopamine function can also be 

probed with PET in combination with a variety of radiotracers labeling dopamine 
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precursors, degrading enzymes, transporters or receptors, and pharmacological or 

behavioral challenges (Volkow et al, 1996). 

 

Raclopride is a selective dopamine antagonist with a high affinity for dopamine 

type 2 (D2) receptors. Since the neurotransmitter dopamine may be involved in various 

neuropsychiatric diseases, the in vivo binding of raclopride to dopamine receptors in the 

striatum can be measured by PET with radiolabeled raclopride used as a tracer. 

[
11

C]raclopride has a long time been one of the most widely used PET tracers, and even 

worked as a model tracer in development and validation of new analysis methods. 

 

Lammertsma et al. (1996) compared one- and two-tissue compartment models, 

and found that two tissue compartments were required to achieve decent fit, also in 

cerebellum, but BP estimates from two-tissue compartment model had too high standard 

errors.  BP was calculated from DV values of striatum and cerebellum, calculated from 

K1-k4 (2 Compartmental model) or K1-k2 (1 Compartmental Model) estimates. MTGA for 

reversible tracers (Logan plot) with metabolite corrected plasma input has been shown to 

provide reproducible DV and DVR maps (Wang, 1999).  The cerebellum is nearly devoid 

of D2 and D3 receptors, and specific binding of RP is thought to be negligible in the 

cerebellum. Therefore, cerebellum is commonly used as reference tissue in 

[
11

C]raclopride PET studies. Multiple time graphic analysis (MTGA) for reversible 

tracers (Logan plot) can be applied to [
11

C]raclopride PET data with cerebellum curve 

instead of metabolite corrected plasma input to produce DVR estimates (BP=DVR-1). 

 

2.3.3 [
11

C] Clorgyline  

 

 [
11

C]clorgyline is a 
11

C-labeled PET tracers have been used for imaging 

MAO A.  Clorgyline (figure 2.8) antagonizes MAO-A, an enzyme that catabolizes 

dopamine. [
11

C]-Clorgyline has been monitored in the human brain and body by PET.  It 

is an irreversible inactivator of MAO A (Johnston, 1968) 
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Figure 2.8 Chemical Structure of [
11

C]clorgyline 

 

Monoamine oxidase (MAO) is an integral protein of outer mitochondrial 

membranes and occurs in neuronal and non-neuronal cells in the brain and in peripheral 

organs.  It oxidizes amines from both endogenous and exogenous sources thereby 

influencing the concentration of neurotransmitter amines as well as many xenobiotics 

(Singer, 1995; Richards, 1998).  It occurs as two subtypes, MAO A and MAO B which 

have different inhibitor and substrate specificities.  MAO A preferentially oxidizes 

norephinephrine and serotonin and is selectively inhibited by clorgyline (Johnston, 1968) 

while MAO B preferentially breaks down the trace amine phenethykunine and is 

selectively inhibited by L-deprenyl (Knoll, 1972). Both forms oxidize dopamine, 

tyramine and octopamine. Oxidation is accompanied stoichiometrically by the reduction 

of oxygen to hydrogen peroxide. The relative ratios of MAO A and B are organ and 

species specific (Saura, 1994). 

Because the regional and cellular compartmentalization of MAO and its subtypes 

determines to a large extent the access of specific substrates to each subtype, a 

knowledge of the distribution of MAO A and B in the brain and the peripheral organs is a 

crucial element in understanding neurotransmitter regulation and in understanding the 

MAO inhibitory properties of drugs (Fowler, 1996).  

 

For kinetic analysis in studies employing [
11

C]clorgyline, a three-compartment 

model is used to estimate k(3), the model term proportional to MAO A activity. Setting 

the k4 term (rate of dissociation from specifically bound compartment) to zero accounts 

for the irreversible trapping of radiotracer during metabolic oxidation. The k3 term is 

related not only to specific binding to the protein but also to the catalytic bond-breaking 

process.  The most robust model parameter was found to be the product λk3. This 

phenomenon has been investigated further and found to be related to the larger 

permeability term (K1/k2) in smokers (Logan, 2005) 
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Chapter 3 

 

Wrist Scanner:  Characterization and Feasibility Studies  

 

3.1 Overview:  

 

Aim: A Non-Invasive Wrist Scanner was developed as an alternative to invasive arterial 

sampling to measure the input function of radiotracer uptake in PET studies.  It consists 

of 2 pairs of 4 x 8 LSO crystal arrays, in one to one configuration with 4 x 8 APD arrays.  

This prototype was used for preliminary experiments for basic characterization.  This 

chapter covers the proof of concept and feasibility studies for non invasive estimation of 

an input function from the wrist arteries. 

Method: Preliminary experiments included estimating sensitivity, spatial and image 

resolution, scatter and count rate performance for the 4 detector scanner.  An 

anatomically correct wrist phantom was used for these studies.  Focal plane imaging 

technique was used to reconstruct planar images.  Finally, the scanner was used in a real 

clinical setting to quantify counts detected in the human wrist.  

Result: The efficiency of the scanner was ~ 4 cps/nCi/cc.  This sensitivity appeared to be 

low for the estimation of an input function, as the human studies demonstrated.  However, 

the results show that the detector was able to discriminate the arterial and venous flows 

from each other using planar coincidence images in both phantom and human studies.  

Measurements of count rate made with a realistic source of radioactivity outside the field 

of view quantified the randoms that would be detected from the nearby radioactive arm 

and body.  Lead shielding between the scanner and the body significantly reduced the 

number of randoms.  A comparison with arterial blood samples and wrist scanner time 

activity curve showed that the shape of the two curves matched closely.  Scans carried 

out in a realistic clinical setting demonstrated that the positioning of the detectors with 

respect to each other and the arteries can be a problem that will need to be taken into 

consideration for the next prototype. 



 49

Conclusion: The wrist scanner will enable noninvasive measurement of the input function, 

thereby eliminating invasive blood sampling. However, its design architecture will have 

to be revaluated for its translation into a clinical setting.  

 

3.2 Introduction 

 

3.2.1 Problem Definition 

 

The level of radioactivity in a particular tissue at any given time is dependent on 

amount of radioactivity in the blood being delivered to the tissue as a function of time 

(the input function) and on the change in the concentration of the radiotracer in the tissue 

as a function of time (the tissue response function) (Wahl, 2002).  A kinetic model can be 

used to relate the changes in the radiotracer concentration to some physiological process.  

The parameters of this model can often be correlated with changes in the physiological 

process brought about by disease or drug action or behavioral intervention.  An input 

function is typically measured by acquiring discrete arterial blood samples, usually from 

a radial artery.  These samples are spun down to separate the plasma from the red blood 

cells.  A measured aliquot of the plasma is used to estimate the concentration of 

radioactivity.  This procedure, although considered as the ‘gold standard’ for determining 

the plasma input function, has limitations, which in turn limit full quantification of the 

PET study.  These limitations include:  

 

• The discomfort to the subject associated with the placement of the arterial catheter 

and withdrawal of blood. 

• The potential radioactive contamination of medical personnel. 

• The possible transmission of blood borne diseases.  

• The apparent dispersion caused by drawing blood out with a peristaltic pump. 

The placement of the arterial catheter is also very difficult in a clinical setting and is 

usually not performed.  Therefore the clinical results are limited to just using the image as 

the diagnostic tool without trying to quantify the process. 
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This chapter illustrates the design, construction and characterization of a novel wrist 

scanner that is proposed for quantitative and non-invasive measurement of the arterial 

radioactivity concentration.  Image derived techniques will be employed for extraction of 

the input function from planar wrist images obtained using the tomograph.  As is shown 

in the following sections, this scanner has several advantages over direct invasive blood 

withdrawal techniques, some of which include the reduction of pain for the patient, the 

reduction of risks associated with blood borne pathogens and radiation exposure to 

medical personnel and the elimination of the distortion in the input function which results 

from blood removal by mechanical means.  

 

3.2.2 Specific Aims  

 

There are three specific aims for the project which are given below: 

1. To measure the sensitivity, spatial and image resolution and characterize the count rate 

performance of the scanner. 

 

2.  To use a Lucite phantom representing the human wrist in order to evaluate the effects 

of other background sources of radiation (surrounding the wrist artery) that may obscure 

the input function from the wrist arteries, using figures of merit such as SNR and contrast 

ratios. 

 

3. To validate the use of the wrist scanner for non-invasive and selective measurement of 

arterial radioactivity in a research setting for human subjects. 

  

3.2.3 Literature Review 

 

The ultimate solution to the problem of arterial sampling may be a small PET 

scanner which specifically images any artery in the body for appropriate blood 

radioactivity detection.  There have been several attempts for building PET scanners to 

separately image the neck or the wrist, for extracting an input function, to complement 

the larger PET scanner that does a broader scan of the brain (Aykac, 2001).  A wrist 
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tomograph would be ideal since it is more portable and practical than a neck scanner and 

it can be placed further away from the total body radioactivity occurring during a clinical 

study which will reduce randoms.  Eriksson et al (1991) tried the first measurement of the 

wrist with a regular PET tomograph to see if it can be feasible to measure an arterial 

input function.  However, they got an underestimation of the input function as compared 

to the invasively sampled input function.  This inaccuracy is due to the problems of 

partial volume effects and poor recovery coefficients.  Thus better spatial resolution 

tomographs need to be designed so that they could have a field of view smaller than that 

of the regular PET scanner.  Rajeswaran et al. (1992) used an array of bismuth germanate 

(BGO) crystals and photomultiplier tubes as their radial monitor, but they did not get a 

good measurement of the input function due to limited spatial resolution of the detector.  

For the wrist PET scanner being developed as a part of this thesis, better photon 

collection crystals (made of Lutetium Oxyorthosilicate, LSO) are being used along with a 

small Avalanche Photodiodes (APD) array that matches the size and pixels of the crystal 

block, as compared to Rajeshwaran’s detector. These technical advancements 

(LSO+APD) dramatically reduce the size of the scanner.  When compared to BGO, LSO 

scintillation crystals have desirable properties such as high light output and fast decay 

time, for an application such as a dedicated wrist scanner (see Chapter 2, Section 2.1).  

Instead of scanning the heart, neck, or brain with a large PET tomograph, the radial and 

ulnar artery of the wrist will be the area being scanned with a small dual detector pairs.  

The wrist scanner will have four unique properties in comparison to the PET tomograph.  

1) Essentially, it will be an independent PET scanner in that it also collects gamma 

radiation from blood flowing through the wrist. (It may be shielded from outside 

radiation to reduce random coincidences occurring as a result of the radioactivity in the 

body.)  

2) The device will be portable and easy to transfer to a clinical setting.  

3) This tomograph will be placed on the same location of the wrist as the invasive 

technique to give a good agreement between blood sampling techniques and also since 

dispersion plays a factor in the temporal profile of the blood concentration.  

4) Lastly, the wrist detector will face the least amount of tissue attenuation, since the 

wrist has reasonably sized arteries and less tissue for the photons to pass through as 
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compared to other body parts (such as the neck, chest or brain) thereby giving less photon 

scatter and a higher signal to noise ratio (SNR). 

 

3.3 Prototype Scanner  

 

The Wrist Scanner consists of 4 detector blocks.  Each detector block consists of a 

4 x 8 array of 2.22 x 2.22 x 15 mm
3
 LSO crystals that are optically attached and read out 

with a matching array of APDs. The LSO crystal arrays for the Wrist Scanner were 

manufactured by Proteus [Proteus Inc., Chagrin Falls, OH] and APDs were Hamamatsu’s 

S8550.  The individual LSO crystals are separated by a 0.078 mm air gap from each 

other.  There is a layer of 3M foil between every crystal.  These are not glued to the 

surface of the crystal, but are placed in the air gap. The purpose of using the mask was to 

let photons that otherwise would escape the crystal reflect back into the crystal which 

would increase the light collection efficiency.  The complete LSO matrix is placed within 

a glass frame that consists of 4 glass plates of 0.5 mm thickness. Figure 3.1 shows the 

details of the Wrist Scanner system 
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Figure 3.1 Top Left: Wrist Scanner prototype with LSO crystals Top Right: Prototype 

wrist scanner with flex circuit visible at the top.  Bottom: 4 x8 LSO and APD arrays 

                                                                         

3.3.1 Light collection efficiency 

 

The light collection efficiency is determined in part by the intrinsic crystal 

properties as discussed in the introductory chapter.  The best energy resolution occurs 

when there are a large number of photons collected for each event and this number has a 

low variability.  Simulations and experiments were carried out for determining the light 

output from the LSO and APD arrays  

 

Light Output Simulations  

The experimental results were compared to the simulation studies of scintillation 

light collection.  OptiCAD [OptiCAD, Optical Analysis Program User’s guide version 

6.0] has been used to simulate the process of the scintillation light collection in one pixel 

of a LSO+APD detector. It is a Monte Carlo simulation software and is structured in a 

computer-aided design (CAD) format.  This enables the user to place objects of complex 

geometry and surface properties into a global or local coordinate system.  For the 

emission of scintillation photons with random distribution and orientation within the LSO 

crystal, additional code that described volumetric sources had to be imported into the 

simulation package.  
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OptiCAD is a commercially available ray tracing program that can be used to 

study a variety of optical systems by modeling the propagation of light rays through 

volumes of material after taking into account their interaction at various surfaces in terms 

of reflectivity, transmission and scatter.  OptiCAD was used to estimate the light 

collection efficiency in these LSO crystals by generating light rays inside the crystal and 

propagating these rays to the photodetector.  The absorption coefficient of the 511 keV 

photons can be determined from the attenuation length of LSO. This gives an attenuation 

coefficient of 0.086 [mm
-1

].  

 

The simulation code was carried out with the following components: 

1- An object that represents the 2.22 x 2.22 x 15 mm LSO scintillation crystal. 

2- A volumetric light source. 

3- An object that represents a layer of silicone cookie between the APD and the LSO 

crystal. 

4- An object that represents the APD (1.6 mm x 1.6 mm active surface). 

5- A film that is attached to the APD window. This film detects the number of 

photons that can reach the APD. 

 

Light was generated isotropically within thin slabs in 1 mm steps along the length 

of the crystal to estimate the effect of the longitudinal light collection efficiency.  Each 

ray is initially generated with unit energy and is propagated until it is either absorbed by 

the photodetector or the ray tracing is terminated.   At each refractive surface, the ray is 

split into a primary and secondary descendant (or ghost) according to its energy.  The 

energy split is based on the refractive indices of the materials at the interface and is a 

measure of the probability of how the light ray is further propagated.  OptiCAD has 

several parameters that are used to terminate the propagation of the light ray, which 

include:  

a)  exceeding a maximum number of ray–surface intersections, (maxdepth) 

b)  exceeding a maximum number of ghosts, (maxghost) 

c) falling below a minimum ray energy  for transmission (mintrans) 
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These parameters were tuned in the OptiCAD simulation to give the best 

agreement with the measured experimental data, and the resulting values were maxdepth 

= 20, maxghost = 2 and mintrans = .01 (Kriplani, 2005). 

 

The light collection efficiency was determined by the ratio of the energy detected 

at photodetector to the total initial energy (or number of rays) generated.  The number of 

photoelectrons detected is related to the number of scintillation photons produced by the 

following formula: 

             Npe/MeV = Ngamma/MeV x efficiency x QE                                                  

An intrinsic light output of 25,000 scintillation photons per MeV was assumed for 

the LSO crystals, and the known quantum efficiency of 24% at the peak wavelength of 

the LSO (420 nm) emission for the phototube was used in these measurements.  LSO-

Surface properties such as reflectance and absorbance were the main parameters that need 

to be well modeled and modified in the simulation inorder to mimic all the LSO 

configurations as discussed above.  

 

The simulation results showed that the placement of a Silicone plate (cookie) to 

transmit the light from the crystal to the APD increased the light collection efficiency.  

Further improvement in the light collection efficiency (almost by a factor of 2) was 

achieved by the 3M Radiant Mirror Film (RMF) wrapping.  Simulation results showed 

that ~4600 photoelectrons/MeV were obtained for a 15mm crystal.  

 

Experimental Light output 

The light output of the LSO arrays was measured by coupling these arrays to the 

APD array through a thin silicone layer or air gap.   All measurements were made with 

the same APD.  The gain of each channel of the APD was measured using a pulsed 

nitrogen laser (wavelength = 337 nm) to illuminate the individual pixels through an 

optical fiber.  The light intensity of the laser was adjusted such that the charge output of 

the APD could be measured directly using an ADC, and it was therefore not necessary to 



 

use a preamp on the APD output.  The integrated charge output was then measured as a 

function of the applied bias voltage to the APD 

 

A Ge-68 flood source was used to experimentally determine the light output.  It 

was placed in front of the detectors and exposed them to a uniform illumination.  For 

each photon interaction with the crystal arrays, the collected scintillation photons that 

reached the APD were converted into electric charge.  The APD signals were amplified 

with charge sensitive preamplifiers, integrated over 90 ns time intervals and digitized 

with LeCroy 4300B FERA ADC’s.  The photoelectrons/MeV and the energy resolutions 

were measured and averaged over all the 32 channels of the detector block.  The width of 

the photopeak measured across its points of half-maximum amplitude is the energy 

resolution.  This is referred to as the full width half maximum (FWHM) and is usually 

expressed as a percentage of the photopeak.  This measurement was repeated for the four 

crystal arrays used for the prototype and the photoelectrons/MeV and energy resolutions 

were averaged over their samples.  

pe/MeV = [photpk-ped (ch) ] / [0.511 (MeV γ) * 0.815 (ch/pe) 
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photoelectrons/MeV.  The standard deviation of light collection distribution from array to 

array was 11 %.  Figure 3.2 shows a typical pulse height spectrum measured with a 

crystal array and the APD with the Ge-68 flood source.  The 511 keV peak corresponds 

to ~ 2400 photoelectrons, or ~ 4800 p.e./MeV.  

 

3.3.2 Electronics and readout system 

Front End Electronics 

The wrist scanner consists of 128 channel camera with a communication and 

power management module, an absolute time and address generator module, and a versa 

module eurocard (VME)-based acquisition system.  The main design objectives for the 

front-end electronics as applicable to the wrist scanner, is that the electronics must be 

optimized on the LSO-APD characteristics, especially its timing properties (charge 

integration time), and that the amplifier needs to be matched with the scintillation 

detector timing properties.  The detectors have a light output of 4800 

photoelectrons/MeV.  The prototype has 4 detector blocks and each has a front-end ASIC 

mounted on the back.  The main purpose of the chip is to provide the position and the 

timing information of every detected event.  On the back of each detector block, there is a 

1.8V voltage regulator and circuitry for independent high voltage trimming of each APD 

array.   

Figure 3.3 presents a block scheme of the ASIC used for this thesis. The prototype 

is composed of 32 channels of Charge Sensitive Preamplifier (CSP), bipolar semi-

Gaussian shaping filter and Zero-Cross Discriminator used to find the timing information 

of every event.  All zero-cross discriminators are interconnected to a 32 channel serial 

encoder used to multiplex the timing information and the 5-bit address of each channel 

into a single output in order to minimize the number of interconnection between the 

ASIC and the DAQ.  When an annihilation photon is detected in the LSO/APD detector, 

the CSP integrates the charges delivered by the APD, to convert them into a useful 

voltage signal. This signal is then filtered through the shaper to limit the noise bandwidth. 

The output signal from the filter has a bipolar shape and is optimized to keep the 

electronic noise contribution to the degradation of the energy resolution negligible. The 
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zero-crossing of this bipolar signal is then found by the timing discriminator, triggering a 

logic timing edge which is asynchronous with the 100MHz ASIC clock. Finally, the 

encoder serializes this timing edge with the 5 bit channel address, decoded by the DAQ. 

  

Figure 3.3: Diagram of the analog front end of the ASIC (courtesy of J.F. Pratte) 

 

Data acquisition system   

On the receiving side of the DAQ is a Field Programmable Gate Array (FPGA) 

based Time to Digital Converter (TDC).  The timing signal edge is digitized by the TDC 

utilizing a high frequency clock (~ 1.3 ns timing resolution) which is achieved using the 

FPGA to split the TDC clock cycle into multiple branches with incremental delays 

between them (Junnarkar, 2005), thereby giving us the ability to assign a time stamp to 

each detected photon.  For each event, the TDC output is a 64 bit word with: 43 bits for 

the time stamp, 5 bits for crystal identification (among 32 crystals from each block), 8 

bits for block detector identification, 5 bits allocated as event counter (3 bits determine 

the event type among 8 different possibilities).   
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The principle of the data acquisition is illustrated in figure 3.4.  The time and 

address information are attached to single events and coincidence processing is done 

offline.  In order to find photons in coincidence, the time stamps of events are used to 

calculate the time interval between two detected single events.  If this time interval lies 

within the coincidence time window, the two single events will result in a coincidence 

event.  From the preliminary tests, the coincidence time window of the system is ~ 20 ns.   
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Figure 3.4a Detector Module Signals are carried on the Flex circuit to a data processing 

module. 

 

Fig. 3.4b. Coincidence timing resolution of the analog front-end using the CFD as a ZCD 

with APD/LSO detector. A timing resolution of 6.70 ns FWHM was measured. 

 

The chip has been evaluated using input from the APD.   It has a linear range 

between 50-600keV (at an APD gain of 50) with an impulse response gain of 20mV/fC.   

The maximum and minimum input charge expected from the LSO-APD modules for a 

true event are from 8fC to 25fC respectively.  The response is linear over this entire 

range.  Figure 3.4b shows the coincidence timing resolution of the ASIC connected to the 
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APD/LSO detector.  A timing resolution of 6.76 ns FWHM was measured in coincidence 

with a PMT coupled to a BaF2 scintillator.  A coincidence timing resolution of 10 ns was 

measured for an energy threshold of 250 keV.  

 

3.4 Preliminary experiments  

 

Preliminary work for the Wrist Scanner involved basic characterization of the 

prototype in an effort to evaluate parameters that will play a crucial role in quantification 

of radioactivity detection from the wrist arteries.  These include sensitivity, resolution 

and count rate performance.  To perform feasibility measurements of image resolution 

and background effects, a wrist phantom was used.  Image formation involved the 

development and optimization of the focal plane imaging technique for this dual detector 

scanner.   A detailed report follows: 

 

3.4.1 Wrist Phantom 

 

MRI images of the wrist were acquired to estimate the location and size of the 

wrist arteries.  A wrist phantom was constructed by estimating the radial, ulnar and two 

arbitrary vein paths as seen in figure 3.5.  The veins were placed on top to simulate the 

venous return and its background noise effects on the arterial function.  The wrist 

phantom design was fabricated using a Lucite block. The phantom’s final construction 

can be seen in figure 3.5 
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Figure 3.5: Top left: MRI scan of the wrist. Top Right: Finished design of the wrist 

phantom representing the left hand.  Bottom: Dimensional illustration of the phantom 

 

In figure 3.5, the ulnar is the bottom hole on the left and the radial is on the right.  

It also shows the artery holes leaning more towards the anterior side of the wrist or top 

edge of the phantom.  Therefore, this phantom could give a more realistic approximation 

of the number of scattered events.  

 

3.4.2 Detection Efficiency 

 

The sensitivity of PET is determined primarily by the absorption efficiency of the 

detector system and its solid angle of coverage of the imaged object. The true 

coincidence rate, Rtrue for a positron emission source located in an absorbing medium 

between a pair of coincidence detectors is given by,  

    Rtrue = Eε
2
gACDe-

µT 
             (3.1) 

Where E is the source emission rate, ε is the intrinsic efficiency of each detector; µ and T 

are linear attenuation coefficient and total thickness of the object respectively. gACD is the 
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geometric efficiency of the detector pair.  Each component as applicable to the current 

wrist scanner is illustrated below.  

 

3.4.2.1 Components of Detection Efficiency 

 

A. Geometric efficiency  

a. Solid angle 

The distance between the two detector pairs is 5.2 cm.  The wrist is assumed to be 

4.8 cm and the total distance between the wrist and blocks is 2mm on each side.   It was 

seen from the MRI scan of the wrist that the ulnar artery was at a depth of 1.9 cm from 

the top (3.3 cm from the bottom).  This was chosen as the point that contains activity 

within the central axis (figure 3.6).  All the events detected by a circle of radius 1.9 cm 

will be detected and hence the bigger circle of radius 3.3 cm was used by solid angle 

component measurement. 

 

 

 

 

 

Figure: 3.6 Solid angle cover range of diameter 1.9 and 3.3 cm 

 

A solid angle was drawn from this point and calculated as a ratio of the width of the 

detector over the circle’s circumference  

 = 0.8 / [2 x π x 3.3]  

 = 0.0386 

The total solid angle component for detection efficiency of both detectors is 0.0772 

 



 

b. Vertical counting efficiency  

For the case of planar detectors of the wrist scanner, the events seen in the field of 

view (FOV) of the detectors would be the only ones counted.  Hence a vertical efficiency 

component is essential for determining the total efficiency of the scanner. 

Figure 3.7 shows the estimated analysis for vertical efficiency in the case of the wrist.  

The object of interest is located at a depth of 1.9 cm from the detector placed on the top 

of the wrist.  Hence, there will be two different FOVs for each height step as illustrated 

by the figure (created by a large (3.3 cm) and small (1.9cm) gap).  

 

 

 

 

 

Figure 3.7: Vertical 
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The fraction of radiation striking the detector that interacts with it is called the intrinsic 

efficiency ε of the detector.  

 The factors that contribute towards ε are:  

a. Probability of an LSO interaction 

b. Electronic triggering probability loss due to low light collection efficiency  

 

 The first component of ε is the probability for a photon to have an LSO 

interaction (εsc).  A gamma photon with enough energy could pass unhindered through 

the crystal if the length is small.  As the area of the crystal increases, the fraction of 

gamma photons that interact and convert to light photons will also increase.  The second 

component is the probability of a photon that would cause an electronic triggering, which 

is a combination of light collection (εcol) being converted to an electronic signal (εe-h) and 

afterwards being counted within the timing coincidence window.   If the energy were to 

be spread to several crystals as in the cross talk problem, then the light energy would be 

too low to be collected and converted to an electronic signal (Vaska, 2003).  The biggest 

factor between the two in reducing efficiency is the light collection.  The light can be 

spread, not reflected well enough or be absorbed by non-reflective material present at the 

gateway of the APD.  The conversion of light and the rest of the electronics are efficient 

(~98%) in producing a count per keV photoelectron.  The other factor that would lower 

the electronic efficiency would be the APD, amplifier and discriminator noise (δ noise), 

which may garble the signal in any of the three steps (accounts for the other 2%).   

  

 In addition, there is an efficiency of 0.6 for the probability for a 511 keV photon 

to interact in the 15 mm LSO crystals  

 

     ε = 1-e
-µ

l
x
                                                      (3.2) 

 

µl is the linear attenuation coefficient of LSO crystal ( 0.88 cm
-1

 for 511 keV) and x is the 

detector thickness, which is 15mm gives an ε = 0.73 
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The electronic discrimination efficiency (determined by the hardware threshold) was 

calculated to be ~ 0.4.  This efficiency is based on the trigger threshold used in the 

readout electronics (150 keV) and the estimate of edge effects and the effect of inter-

crystal scatter in the crystal arrays on the trigger efficiency. This gives a combined 

efficiency of 0.30.  

 

C. Absorption and Scatter of Radiation  

  

 Absorption generally causes a decrease in the recorded counting rate, while 

scatter can lead to a decrease or an increase, depending on whether there is more 

scattering away from or toward the detector.   Some of the photons can change direction 

out of the FOV due to Compton scatter and attenuation.  The photons can interact with 

the atoms of the material medium and produce Compton scatter as described in chapter 2: 

PET Physics. For the calculation of the attenuation loss, the material properties are taken 

into consideration in calculating the percent photons being attenuated.  The equation that 

approximates the attenuation loss in any medium is:     

    N = No exp(-µδx)        (3.3) 

where No is the total number of photons, N is the amount of photons left after attenuation, 

µ is the linear attenuation coefficient and δx is the distance traveled by the photons 

through the medium.   The attenuation coefficient can then be used in equation 4.1 to 

calculate the percent attenuated.  In this case, two distances were in question, which were 

1.8 cm and 3.2 cm. The attenuation for the tissue, µ at 511keV is 0.095 cm 
-1

.  Therefore, 

using the exponential piece of the equation; one would get attenuation coefficients of: 

exp(- 0. 095 * 3.3) = 0.73 

exp(- 0.095 * 1.9) = 0.83 

For the combined attenuation of both detectors, it would then be: 0.73 * 0.83 = 0.61. 

The total sensitivity of this detector would theoretically be:  

 37 dps/nCi * (0.0772 * 0.44 * (0.73 * 0.4)
2 

) cps/dps = 0.11 cps/nCi  
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Hence, for a set of two detector pairs, the efficiency is 0.22 cps/nCi. The detector has a 

field of view of 0.05 cc, hence the sensitivity of the scanner is 4.4 cps/nCi/cc.  

With attenuation, this sensitivity number would then be: 0.11 * 0.61 = 2.684 cps/nCi/cc 

 

3.4.2.2 Experimental estimation of the detector system sensitivity  

   

  Figure3.8: Experimental setup for efficiency measurement.   

 

 An experiment was conducted to measure sensitivity and to simulate the rapid rise 

and fall of the activity in a typical input function. This efficiency measurement was 

carried out by placing 2µCi/cc of fluorine-18 in an aqueous solution in the tubing inside 

the phantom. The flow through the phantom was switched between plain water and the 

solution containing the radioactivity, ‘F-18’ solution.  The experimental set up is shown 

in figure 3.8.  The flow of fluid would start first from the reservoir of water, then 

switched to the F-18
 
solution and lastly switched back to reservoir of water all in a one-

pulse form.  The activity was left to decay to collect enough data for a proper exponential 

fit.  The block labeled hot was the vial that contained radioactivity, and the block labeled 

cold was the vial containing water. The flow rate for all three experiments was ~7.2 

mL/min.  The inner diameter of the tube was 2mm.  The transit time between the switch 

valve and the detector was ~24 sec.  The efficiency, obtained as a  ratio of dividing the 
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wrist monitor measured activity (in cps) over the well counter measured activity (in nCi), 

was the efficiency of the wrist scanner with one set of detectors in operation was 4.0 

cps/(nCi/cc) for two detector pairs.  

 

 This value matches well with the theoretical calculation of 4.4 cps/nCi/cc.  

However, taking attenuation into consideration, the efficiency value was calculated as 2.7 

cps/nCi/cc. This difference may be as a result of variability in the rejection of attenuated 

events.  

 

3.4.3 Data Acquisition and Image Formation 

 

3.4.3.1 Selection of acquisition parameters 

 

Energy Window 

The lower level discriminator sets a threshold energy (E) for counting.  It must be 

set to its optimum value for maximum sensitivity to true photons while rejecting low 

energy scattered photons. If the system has high energy resolution (narrow photo peak), 

the LLD can be increased to filter out the scattered photons as shown in Figure 3.9  

 

      Figure 3.9 Determination of LLD threshold for detection of photo peak  

The data acquisition system for the wrist scanner does not store energy information for 

each singles event, a “threshold scan” was carried out to collect the energy spectra. A 
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was stepped in increments of 10mV over the range of 100-700mV.  At each setting, the 

singles rate at each crystal was obtained.  The resulting rate vs. threshold spectra were 

differentiated to give the energy spectra for each of the 128 ((8*4)*4) channels.  The 

threshold at which the lowest gain channel could be detected was selected as the 

operating threshold, and is averaged at 150 keV.  

 

The fact that the low threshold will cause channels with higher gain to detect a 

number of scattered photons makes this method far from ideal, especially since an error 

in the assembly caused the ratio of the maximum and minimum photo peaks to be 

extremely large.  The average energy resolution at 511 keV was 23% FWHM.  

 

3.4.3.2 Focal Plane Imaging 

 

Each detector pair operates in coincidence, and data is collected in list mode.  

Figure 3.10 illustrates the sequence of events leading to the formation of images.   On the 

detection of a coincidence event, the electronics decode the raw x and y coordinates of 

the coincidence on opposing detector faces.  

 

 

 

 

 

 

 

 

 

 

 

Figure3.10: Basic flow of data acquisition and limited-angle projection used in formation 

of wrist images. 
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 Most of the events take place in the artery at a relatively well known depth within 

the wrist based on the anatomical position of the arteries.  In order to use all the counts in 

a 3D mode, a mapped image can be formed at that known depth, or z-depth as seen in 

figure 3.11.  This reconstructed map is also known as focal plane imaging.  This method 

of image formation is similar to that used in the early tomographic systems of the 1970s, 

before switching to annular rings and is frequently used in dual detector Positron 

Emission Mammography (PEM) units (Doshi, 1999; Thompson, 1994).  However, since 

only two detector pairs are used (because of economic reasons) focal plane imaging will 

be the method currently used for the detection of the input function.  

Once x and y
 
has been calculated, the z-depth can be used to determine the 

position of the focal plane image. With the use of exact coordinates of the event on the 

focal plane image is extracted using a look up table.  An image using focal plane imaging 

will be extracted through using an adjusted z-depth or position of the artery (usually it 

may be estimated based on the girth of an individual’s wrist).  In this case, the phantom 

had a z-depth of 1.9 cm.   The only drawback to this concept is that events which occur at 

another focal spot will add its events to the focal spot of interest.  This type of noise may 

have to be subtracted, but it was not applied here since the noise was seen to be minimal.  

Also, it is because of this drawback that annular reconstruction is preferred since it 

separates each of the events into a proper projection in the sinogram (chapter 1).  

However, for simplicity and economic cost, dual detectors and its complimentary focal 

plane imaging will be the current method of choice 

 

A 3D line equation was used for tracing rays between randomized end point 

locations on opposite detector heads. Counts are allocated to the pixel through which the 

LOR passes.  Given two points (x1,y1,z1),and (x2,y2,z2), for a certain depth z, x and y can 

be calculated. 
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Figure 3.11 shows an illustration of using a 3D line equation to find the exact x 

and y co-ordinates of the plane of interest, i.e. at the arterial depth of the wrist (assumed 

to be 1.9) 

 

 

 

 

 

 

 

 

 

 

Figure3.11: Schematic of the focal plane algorithm used for reconstruction of the blood 

vessels.  

 

Coincidence data was then sampled in the ‘1 or 3- nearest neighbors (NN)’.  Each 

combination combines a different number of LORs, e.g. ‘1-NN’ accepts coincidences 

between directly opposite crystals and their immediate neighbors. Figure 3.12 illustrates 

this configuration.  This mode produces a 2-D, 15x7 matrix of the activity distribution 

between the two detectors.  A MATLAB code was written to produce this matrix of 105 

pixels.  Each pixel is 1.1 mm x 1.1 mm.  
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Figure3.12 : Lines of response between detector pixels of 2 detectors. The ray path 

spacing in the plane midway between the detectors is half the detector spacing.  An image 

plane is represented by the dotted line 

 

 

 

 

 

 

 

       

 

 

 

 

 

Figure 3.13: Formation of planar images: Volume of the wrist between detectors is 

divided into equal slices. Point of interaction of LOR with the planes is used to localize 

event in that plane. Final image set consists of 7 frames, each of which corresponds to 1 

slice 

The wrist volume between the detectors was divided by equidistant planes.  The 

point of interaction of the LOR with the desired planes is determined.  A number (whose 

value is inversely proportional to the product of the probability of detection of an 

annihilation in that plane and the crystals’ efficiencies) corresponding to the crystal 

element identified, is added to the image matrix.  The method has the advantage of 

producing the focal plane effect, as a result of which the image frame closest to the site of 

preferential radiotracer uptake has the most focused image (figure 3.13). With prior 

knowledge of the thickness of the wrist, the distance of the blood vessel from the upper 

detector can be estimated.  

3.4.4 Normalization  
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Images require corrections for nonlinearity and nonuniformity of the detector 

elements; hence normalization data was acquired for the scanner.  Normalization 

coefficients for each line of response of the scanner were obtained by acquiring a scan of 

a uniform cylinder that almost filled the FOV filled with F-18 in the chemical form of 

FDG.  The size of the phantom was 3.5 x 2 x 1.5 inches. The projection of relative 

detector efficiencies ε is the ratio of this randoms-subtracted projection to the average 

value of the image.  The efficiencies planar image is used as a normalization correction 

factor. This correction was applied to the counts recorded for each detector pair in a scan 

by dividing the data from that scan by the normalization image.    

 

The image containing the detector efficiencies is shown in figure 31.4 along with 

the planar images of measured data from a rod source, before and after normalization in 

figure 3.15, which shows the improvement in image quality before and after efficiency 

correction.  ROIs on these images demonstrated up to a 19% drop in pixel standard 

deviation after correction. 

 

                                                

Figure 3.14 Normalization: Planar image of detector efficiencies for the 2 detector pairs  
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Figure 3.15 Validation of Normalization: Rod source placed between one set of 

detectors. Left: Before normalization Right: After normalization  

 

3.4.5 Resolution 

 

3.4.5.1 Spatial Resolution  

 

System resolution was measured by placing rod sources in the arterial position in 

the wrist phantom  The uniformity in the system resolution as a function of transaxial 

distance from the center of the imager in axial distance from the center was also 

measured.  Profiles perpendicular to the axes of the tubes were drawn to produce line 

spread functions (LSF).  The LSFs were fit to a Gaussian function; Full-width-at-half 

maximums (FWHM) were calculated from the fits and used as measures of system 

resolution.  The results were plotted as a function of distance from the center of the 

imager. (Figure 3.16) 

 



 

This procedure is a slight deviation from the recommended National Electronics 

Manufacturer’s Association (NEMA) protocol. The technique used was considered more 

appropriate to assess the resolution uniformity of a planar imaging system that utilizes 

focal plane images, instead of the NEMA resolution protocol which is intended for 

systems utilizing tomographic reconstruction algorithms.         
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Figure 3.16(a) shows the resolution in the center of the FOV is 2.12 mm. (b) is a spatial 

resolution measure with two 
68

Ge rod sources in the field of view whose centers are 4 

mm apart. Its projection profile along the horizontal axis is also shown (c) shows a plot of 

system resolution as a function of axial distance from the center of the imager.  Note that 

the resolution measured with the focal plane equal to source position increased slightly as 

distance from the center increased.  The FWHM of the LSFs at the arterial position was 

2.39 mm.  It degraded from the center of the imager towards the end by 12%.  This effect 

is expected, and is due to changes in the solid angle subtended by the detectors. 

 

Image Resolution  

An experiment was done to determine if the image resolution of the scanner was 

sufficient to clearly distinguish the arterial and venous blood vessels which are in close 

proximity to each other.  The centers of arterial and venous lines are 4mm apart.  To 

estimate the spatial resolution, a series of experiments were done with 1 mm diameter 

Ge-68 rod sources placed in the artery and/or vein channels in the wrist phantom. Counts 

were collected for approximately 150 seconds and a high resolution planar image was 

generated to determine if the artery can be visually separated from the vein.  

Figure 3.17 is a planar image of a Ge-68 rod source inserted into 2 channels of the 

wrist phantom.  The planar image can be used to estimate the sensitivity and the 

uniformity of the block-detector system.  In the image, the radial artery and vein are 

clearly separated.  The image will be used to place regions of interest over the arteries in 

the wrist that can then be used to generate the time activity curve for the input function. 
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Fig 3.17. Left: A planar image of the wrist phantom taken with 1 mm diameter Ge-68 rod 

source placed in the artery and vein channels in the wrist phantom. Right: The 

anatomical view of these vessels. (Wrist figure source: http://www.human-

anatomy.net/anatomy-wrist pictures.html) 

 

3.4.6 Scatter fraction 

 

NEMA performance measurement for scatter is done using line sources placed at 

several locations within a cylindrical, water-filled phantom specified by NEMA (NEMA 

performance measurement of PET).  The procedure used for the scanner was a departure 

from the NEMA protocol.  Specifically, the use of a plane phantom was different. This 

deviation from the NEMA protocol was dictated in order to estimate the scatter fraction 

expected in tissue as opposed to a generic measurement of scatter.  In the measurement of 

an input function from the wrist arteries, scatter will cause errors in the reconstructed 

radioactivity concentrations.  

The Compton scatter fraction of the scanner was measured by imaging a uniform 

phantom of 3.5’x 2’ x 1.5’ (figure 3.18).  The phantom was filled with water containing 

an FDG concentration of ~0.120 mCi/cc.  The phantom was positioned on the detectors 

and imaged for 600 s.  The scatter fraction was determined by placing ROIs on the planar 

image, assuming the mid plane of the scanner for the z depth. 

http://www.human-anatomy.net/anatomy-wrist%20pictures.html
http://www.human-anatomy.net/anatomy-wrist%20pictures.html
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Figure3.18 Experimental setup for scatter estimate 

 

A ROI was also placed on a plane which was outside of the phantom. The 

maximum pixel value from the ROI drawn on the planar image of the non phantom area 

was divided by the average of the maximum pixel values measured from the 

compartment containing FDG.  The Compton scatter fraction was determined to be 18% 

(+/- 2%) detector separation of 5.2 cm and energy threshold of 150 keV.  This should 

improve with the higher threshold that we are able to use now.   

 

3.4.7 Contrast  

 

Contrast resolution of the detector was quantified using the tubing set up similar 

to the efficiency measurement set up shown in figure 3.8. The true contrast was measured 

by calculating the activity in the arterial tubing to that in the venous return line. The 

contrast ratios were calculated as follows 
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Where A is the average signal as obtained using a ROI on the region. With the same ROI, 

signal-to-noise (SNR) was calculated as  
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Scattering medium (air) 

Radioactivity 
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v

artA
SNR

σ
=                 (3.7) 

Table 3.1  shows the contrast for and SNR values for the venous return experiment. 

Ctrue Cav SNRav 

22 6.69 8.23 

12 5.49 7.51 

19 6.17 7.14 

 

3.4.8 Count Rate Performance  

 

Noise equivalent counts (NEC) analysis condenses the behavior of a PET system 

into a single metric and is widely used to assess PET imaging performance.  It is used in 

quantifying the effect of random and scatter coincidences on the statistical quality of the 

acquired data (Strother, 1990).  

RkfST

T
NEC

fov )1(

2

+++
=           (Eq. 3.8) 

where T,S and R are the true, scatter and random coincidence rates respectively, f
fov 

is the 

fraction of the FOV occupied by the object and k reflects the variance contributed by the 

random coincidence estimation method.  

 

A NEC measurement was performed to assess count rate capability of the Wrist 

Scanner system. A 21 cc uniform phantom, which partially filled the FOV (fov = 0.60) 

with activity was filled with ~1 mCi of 
18

F and scanned during its decay. Prompt and 

delayed coincidences were extracted from the singles data, and the rates of trues, 

randoms, and NEC are plotted in Figure 3-19.  
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Figure 3-19 Rates of true coincidences, random coincidences and noise equivalent counts 

as a function of activity concentration  

 

Scatter fraction of 18%, as seen in 3.4.6, was used for these calculations.  A 

reduction in the amount of scattered and random coincidences would improve the NEC 

rate.  This can be accomplished with improved correction methods. 

 

 3.5 Human Studies 

 

The four-detector prototype was used in six routine human PET studies.  The 

subjects were injected with 5-6 mCi of [
11

C]raclopride or 4-5 mCi of 2-[18F] flouro-2-

deoxy-D-glucose (FDG).  The radial and ulnar arteries were marked on the subject’s 

wrist by the physician.  This aided placement of the two arteries between the detector 

blocks.  To provide maximum resolution of the artery from surrounding tissue, the 

scanner was positioned with its long axes parallel to the artery.  Every subject had two 

catheters inserted for each scan; a standard arterial catheter in the radial artery for the 

sampling of arterial blood and a second catheter in the antecubital vein for radiotracer 

injection.  During the PET scan, the arterial blood was sampled by using an automated 

blood-sampling device (Ole Dich, Denmark), which draws a 0.4 ml samples of blood 

every 2.5 seconds for the first 2 minutes. Blood samples were then drawn manually every 
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minute from 2–6 min, then at 8, 10, 15, 20, 30, 45, and 60 min.  Each arterial blood 

sample was centrifuged and a sample of plasma assayed in a well counter.  In case of   

[
18

F]FDG the hand with the arterial catheter was heated to 50ºC to draw arterialized 

venous blood.  After [
18

F]FDG was injected, arterialized venous blood was sampled by 

using the automated blood-sampling device.  The Wrist Scanner was placed in the arm 

which was also the radiotracer injection site.  The invasive arterial samples were used for 

a gold standard comparison. 

 

 

            Figure 3.20 Human Wrist Scan 

Only three out of the seven studies performed with the wrist scanner had useable data 

for analysis:  

1. One subject was scanned without lead shields for making an estimate of the 

random coincidences with and without shielding.  

2. The small wrist sizes of two subjects did not allow the correct placement of the 

wrist.  

 

Focal plane reconstruction procedure as described in section 3.4.3.2 was used to 

generate planar images.  Dynamic sequences of the wrist (figure 3.21) emphasized the 

mis-positioing of the scanner.  The streak on the left is the radial artery and the streak in 

the center may be the radial vein.  Figure 3.22 shows a time vs. activity plot derived from 

drawing regions of interest on the planar images.  Decay corrected TACs were drawn for 

arterial and background tissue ROI’s.  An arterial ROI was drawn on the ulnar artery.  To 
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estimate the spillover, a tissue ROI was also drawn. The ROIs consisted of summed 

columns of activity for the two ROIs.   

  

 

Figure3.21: Planar images for a [18F]FDG study.  
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Figure3.22: Time activity curves for arterial ROI, background ROI and subtracted curve.  

 



 82

A recovery coefficient was used to correct for partial volume effects, caused due 

to the limited resolution of the scanner and the size of the blood vessels.  These 

corrections are discussed in detail in chapter 4 (Tomographic images of the wrist using a 

small animal scanner). Figure 3.23 shows the TAC from the wrist scanner and from 

invasive blood samples. The two curves are very similar in shape. The Wrist Scanner 

TAC shows a characteristic peak and exponential decay of activity with time.  
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Figure: 3.23 Comparison of the TACs from the Wrist Scanner and Arterial samples 

 

3.6 Effects of Nearby Sources  

 

The amount of radioactivity in the wrist arteries is very small relative to the total 

amount of radioactivity in the body. Background radioactivity from the nearby body and 

surrounding wrist tissue presents a major challenge. Since the injection was done in the 

arm with the wrist scanner, the number of delays would increase considerably without 

shielding. 

  

To assess the effect of threshold and timing coincidence window length on the 

random rate, a flood source was used in the field of view of a two detector array with an 

oval source of about 10 times the strength extending from just outside the field of view to 

10 cm away.  The singles, coincidence, and random coincidence rates for different 
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threshold and coincidence timing window settings. The delay for the delayed 

coincidences was 56 ns.  The signal integration time (gate length) was 390 ns.  The rates 

were measured using a visual scaler which was not affected by DAQ dead time, and also 

with a CAMAC scaler that would reflect the DAQ dead time.  These results are shown in 

Table 3.2   

 

Table 3.2  Data from a measurement of count rate with sources inside and outside the 

field of view 

Duration  Coincidence 

timing window 

Energy 

Threshold 

Prompt 

Events  

Delayed 

Events  

          Ratio 

Prompt/Delayed 

8:00 40 nsec 400 keV 26014 7838 3.32 

8:00 40 nsec 250 keV 88625 27504 3.22 

8:00 20 nsec 400 keV 14033 2077 6.76 

8:00 20 nsec 250 keV 61405 11181 5.49 

 

This table shows that for this particular configuration, using a 20 ns coincidence 

timing window and a threshold of 400 keV results in a ratio of prompt to delayed 

coincidence events of 6.76.  This can be compared to a 40 ns coincidence timing window 

with a 400 keV threshold where the coincidence ratio is about 3.32.  The clear conclusion 

is that by making the coincidence timing window as narrow as possible, we can greatly 

reduce the number of random coincidence events in this detector arrangement.  

 

To more accurately assess the effect of shielding the wrist scanner from the body, 

a 1.2 cm (0.5 inch) lead shield was placed on the body side of the prototype 4 detector 

wrist scanner.  Two separate studies were done where the subject was injected with 5-6 

mCi of FDG, one with the shielded scanner in place and one with the unshielded scanner.  

Using a 20 nsec timing window and a 150 keV threshold, our average ratio of prompt to 

delayed events went from 2.7 for the unshielded case to 6.1 for the shielded case.  The 

energy threshold was set this low as a result of not being able to adjust the gain on each 

channel.  
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3.7 Discussion  

 

Based on the experiments described in the above sections of this chapter, 

important conclusions were made, paving way for future work.  There are a number of 

effects that confound accurate measurement. 

 

Sensitivity of 4 cps/nCi/cc is low for detecting of activities typical seen in the 

wrist.  There are many factors that can contribute to this loss in sensitivity for instance, 

the field of view, gamma or light photon detection and the electronic system itself.   

Aside from the problems of sensitivity; imaging and derivation of an input function can 

also be improved through, for example, arterial co-registration with MRI, or scatter 

background corrections.  For improving the scanner’s sensitivity, there may be several 

considerations on how the detector and its accompanying components will be constructed 

and placed in a real clinical experiment.  The geometrical effects had two factors that 

determined the sensitivity, one being the solid angle efficiency and the other the vertical 

counting efficiency.  Both of these factors are dependent on the wrist size of the patient.  

Since human patients vary in wrist sizes; subjects with a smaller wrist diameter will have 

a better sensitivity than a larger diameter (mostly because for the larger diameter the solid 

angle on the detector is decreased).  The vertical efficiency remains the same when 

assuming the artery is scaled to a fixed position in the wrist. Therefore, to improve the 

detection on the larger diameter subjects more detector pairs may be used. Although the 

sensitivity will be higher with a smaller wrist, the errors in the measurement will be 

greater due to the smaller volume and the higher partial volume effect.  

  

The response function of the system varies with position, so the efficiency for 

detecting activity in the artery depends strongly on position.  The horizontal position may 

be estimated from the image, but the vertical position cannot be measured accurately.  

The dynamic focal plane imaging program requires prior knowledge of the position of the 

arterial blood vessel to ascertain the region of activity in the image.  Since the program 

uses the depth of the blood vessel, two different depths give different count totals.  If the 

wrong depth position was to be given, an inaccurate count total may be produced.   Also, 
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partial volume effect is a major one, which will be affected by patient to- patient variation 

in the artery diameter.  A MRI co-registration step for the determination of the blood 

vessel position would ascertain and validate the z depth and partial volume effect 

corrections.  This would require taking an MRI image of the patient’s wrist to get a 

clearer picture of where the arterial blood vessel is positioned along the length of the 

wrist and provide a depth parameter for the FPI program.  The high resolution detector 

arrays produce an accurate two dimensional image separating venous activity, since the 

radial and ulnar veins are separated laterally from the arteries.  Planar images have almost 

no resolution in the third dimension, so the artery will overlap with a significant amount 

of other tissue in the wrist and activity in the surrounding tissue may interfere with the 

arterial activity measurement. To evaluate this interference and explore an annular ring 

wrist tomograph, the MicroPET scanner was used to collect images of a human wrist 

during a routine PET study. 

 

A major hurdle in quantifying wrist data with certainty was the threshold voltage 

at ~150 keV.  Raising the threshold to 450 keV would also decrease the scatter. Therefore, 

optimization of the threshold level could increase contract ratios, reducing scatter and 

improving NEC curves. 

 

The rigid geometry of the scanner did not allow for both the arteries to be in the 

field of view, hence the scanner could be placed only on one of the arteries. The planar 

image (figure 3.21) shows a hot streak, which is the ulnar artery.  The incorrect 

positioning of the scanner with respect to the arteries will change the signal to noise ratio 

and hence the absolute quantification of the data.  Therefore, flexibility of adjusting the 

detectors should be conceived in the next prototype to take care of various wrist sizes.   

 

Placement of the scanner will be a critical issue, since the detector is only 4 pixels 

wide and it must be positioned such the artery is in the field of view.   The next prototype 

will be conceptualized so that at least the adjacent detectors can be adjusted to sit 

precisely for radioactivity measurement from the arteries.  
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3.8 Conclusion   

 

By improving the hardware sensitivity and image quality, applications such as 

kinetic analysis would also be improved in calculating metabolic rate constants and 

quantities of indicator radiotracer concentrations. The human experiments emphasized 

that the placement of the scanner is a major concern and should be dealt with in the next 

prototype design.  Nonetheless, the characteristics of the input function, peak height, time 

to peak and area under the curve are comparable to the invasive arterial samples.  Precise 

calibration and knowledge of individual subject artery location, wrist thickness, and 

precise positioning are main concerns at this point. 
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Chapter 4 

 

Tomographic Images of the Human Wrist using a Full Ring 

Tomograph  

 

4.1 Overview 

 

Aim: Images of the ulnar and radial arteries obtained with the wrist scanner will have 

partial volume effects which complicate the estimation of an input function.  This chapter 

provides a proof of principle for extraction of an input function from tomographic wrist 

images and the methods for correction for the partial volume and spillover effects present 

in the wrist scanner images. 

Method:  A small animal scanner, the MicroPET R4, was used to acquire radioactivity 

concentration in the human wrist during the uptake period of 2-[
18

F] flouro-2-deoxy-D-

glucose (FDG).  To recover the radioactivity counts lost due to the small size of the 

arteries (~2-3mm) and limited spatial resolution of a scanner (MicroPET~ 2.6 mm), a 

recovery coefficient (RC) was used.  The image derived input function (IDIF) was 

corrected using this RC value for 5 subjects.  Invasive arterial samples were also taken 

for gold standard comparison.  Finally, metabolic rate of glucose (MRglu) was calculated 

using the Sokoloff model. 

Results: The characteristics of the curve (area under the curve, peak height, time to peak) 

and the MCRglu for the IDIF and invasively sampled arterial input function (AIF) did not 

differ significantly (p<0.05).  The shape of the two curves also matched well. The RCs 

for five subjects were adjusted such that the MRglu for the IDIF match the arterial 

plasma input function (AIF) and finally an average of these ratios will be used for partial 

volume correction in absence of the knowledge of blood vessel caliber.  

Conclusion: The results have demonstrated the feasibility of using a tomographic wrist 

scanner and the ability to compensate for the small size of the wrist arteries and 

resolution of the scanner.  
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4.2 Specific Aims  

 

Tomographic images of the wrist help to evaluate the potential of extracting an input 

function using a ring detector.  The main reasons for acquiring tomograhic images are: 

1. The 4 detector prototype has a sensitivity of 4cps/nCi/cc (discussed in previous 

chapter). An increase in sensitivity will be desirable to quantify radioactivity in the 

arteries.  

2. Focal plane imaging works effectively in two dimensions.  The artery and the vein are 

laterally separated from each other and hence can be separated using a planar 

projection.  However, there will be no discrimination in the third dimension and so 

the artery will overlap with a significant amount of tissue.  This chapter estimates the 

tissue activity in the wrist that may interfere with the arterial radioactivity 

measurement. 

3. Due to the small size of an object of interest and limited resolution of a scanner 

(Hoffman, 1982), partial volume effects result in loss of quantification of data. 

Tomographic images of the wrist will help to evaluate and compensate for these 

effects. 

 

A small animal scanner was used to collect images of a human wrist during 

routine [
18

F] FDG studies.  In these experiments, the MicroPET R4 small animal scanner 

(Concorde Microsystems Inc.) was positioned next to the Siemens HR+ PET scanner bed.  

Five subjects were injected with 4.5-5.5 mCi of [
18

F] FDG (Hamacher, 1986).  Every 

subject had two catheters inserted for each scan; a standard arterial catheter in the radial 

artery for the sampling of arterial blood and a second catheter in the antecubital vein for 

radiotracer injection.  The hand with the arterial catheter was heated to 50ºC to draw 

arterialized venous blood.  After [
18

F]FDG was injected, arterialized venous blood was 

sampled by using an automated blood-sampling device (Ole Dich, Denmark), which 

draws a 0.4 ml samples of blood every 2.5 seconds for the first 2 minutes.  Blood samples 

were then drawn manually every minute from 2–6 min, then at 8, 10, 15, 20, 30, 45, and 

60 min.  Each blood sample was centrifuged and a sample of plasma assayed in a well 

counter.  These were used for gold standard comparison of the IDIF from the wrist image.  
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The hand with the injection site was placed in the field of view (FOV) of the MicroPET 

scanner.  At the injection of the tracer, sequential PET scans of the wrist were collected 

for the radiotracer uptake period of 30 minutes.  The data was binned to match the 

sampling of arterial blood.  Images were reconstructed using filtered back projection with 

a ramp filter cutoff at the Nyquist spatial sampling frequency (0.444 mm) 

 

4.3 Correction for Partial Volume and Spillover on ROIs 

 

The location of a radioactive point source in the field of view (FOV) can only be 

determined with a resolution quantified by the full width at half maximum (FWHM) of 

the point spread function (PSF) of the tomograph.  Under the assumption that the 

tomograph is a linear system, the PET image of an extended radioactive source can 

simply be obtained by convolving the true radioactivity distribution with the PSF.  The 

correction for finite detector dimension thus consists in deconvolving the PET image with 

the PSF, operation which is commonly referred to as partial volume correction. 

 

When the size of an object is more than twice the FWHM of the PSF, the PET image 

contains voxel values which are linearly related to the radioactivity concentration in the 

object.  This relation no longer holds for smaller objects. Accurate inference of the true 

object size and radioactivity concentration from the PET image then requires knowledge 

of the response of the tomograph as a function of object size and shape (Hoffman, 1979). 

The recovery coefficient is defined as the ratio of the apparent radioactivity concentration 

in the image to the true radioactivity concentration in the object, and is determined 

specifically for the tomograph and reconstruction parameters used.  When the object size 

and shape as well as the tomograph PSF are known, pre-determined RC values can be 

used to correct the radioactivity concentration measured in the image.  A fraction of the 

object radioactivity spills out to the background, and the object is contaminated by 

radioactivity that spills in from the background. Equation 4.1 is used to correct for these 

effects.    

                         A(t)= RC x Cp(t)+SF x B(t) ……………………………………..4.1 
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A(t) is the concentration of radioactivity as measured by the scanner and is assumed to be 

a linear combination of two components: the true radioactivity from the from the blood 

vessel (Cp(t)) and the radioactivity from the surrounding tissues (B(t)). RC and SF are 

partial volume and spillover fraction from the surrounding tissue.  

 

The simple geometry of the radial and ulnar arteries in the wrist allow the 

approach of Kessler (Kessler et al 1984) to be used for the correction of the non-

negligible effects of partial volume and spillover.  Counts that spilled out of the blood 

vessel into surrounding tissue need to be recovered, especially soon after the bolus 

injection (Figures 4.la)-c)).  At later times, after the radiotracer has perfused in the 

surrounding, counts that spilled into the blood vessel from surrounding tissue need to be 

subtracted (Figures 4.ld)-f)).  

 

The RC values can be derived analytically from a simple simulation.  The blood 

vessel is modeled as a cylinder with a circular cross-section and the surrounding tissues 

are assumed to have a uniform radiotracer uptake.  A grid of 0.1 mm x 0.l mm pixels is 

first created. Pixels located within a given radius from the center of the grid are assigned 

a value of unity whereas those outside this area are set to zero.  This binarized disk is 

then convolved with a two-dimensional Gaussian function having the measured transaxial 

FWHM of the tomograph and an area normalized to unity.  Circular ROIs of increasing 

diameter are centered on the grid and the average pixel value within each ROI is 

computed on both the binarized and blurred disks.  The recovery coefficients are finally 

calculated for a set of ROIs and a blood vessel of a given caliber as RC=ROI (blurred 

disk) /ROI (binarized disk). 

 

To estimate the spillover, pixels located within a given radius from the center of 

the grid are assigned a value of zero whereas those outside this area are set to one.  This 

inverse grid was similarly convolved with a two-dimensional Gaussian function and 

ROIs were drawn.  The spillover fraction (SF) was calculated as ROI (inverse blurred 

disk)/ROI (inversed binarized disk). 
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Figure 4.1 a)-c) Counts that spill out of the blood vessel  in to the surrounding tissue 

need to be recovered; d)-f) Counts that spill into the blood vessel from the surrounding 

tissue need to be removed. 

 

The accuracy of the RC estimates was assessed by imaging a mini Derenzo 

Phantom (Data Spectrum, Chappel Hill, North Carolina)   in the MicroPET scanner.  The 

phantom consists in six sectors with tubes of diameter 4.8, 4.0, 3.2, 2.4, 1.6 and 1.2 mm.  

The tubes were filled with an F-18 solution of approximately 1uCi/cc at the start of the 

first scan.  It was scanned for 20 minutes and the images were reconstructed using the 

same 3D filtered back projection algorithm as used to reconstruct the human wrist images.  

Referring to the original definition of Hoffmann et a1(1979), the RC values were 

calculated for each tube as the ratio of the radioactivity concentration measured in ROIs 

of diameter ranging from 0.6 to 3 mm over the decayed radioactivity concentration of the 

F-18 solution. RC was defined as:  

 

RCroi=Ctube/Cinjected 

 

An anti-Derenzo phantom was used to estimate the spillover fraction, where the 

tubes were solid and the rest of the phantom was hollow. The SF correction fraction was 
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calculated by drawing the ROIs for the tubes to estimate the amount of radioactivity in 

the phantom (background) that spilled into the tubes.  The measured RC and SF values 

were compared with those predicted by the simulation described above which was 

performed for each tube and each ROI with FWHM=2.6 mm corresponding to the 

measured spatial resolution of the Concorde MicroPET R4.  

 

4.4 Region of Interest Analysis  

 

Dynamic wrist frames over the period of first 2 minutes were summed.  This will 

optimize drawing ROIs due to better visualization of the blood vessels.  The summed 

image was then examined visually for the arteries.  On this summed image, circular ROIs 

(diameter=1.5 mm) were drawn manually around the voxels having the highest 

radioactivity concentration at the expected location of the radial and ulnar arteries.  In 

order to correct for the spillover effects relating to the blood vessel, a background ROI 

was delimited as an annulus (outer ellipse area= 2 cm
2
, inner circle diameter= 4 mm) 

around the arteries.  The diameter of the inner circle of the annulus defining the 

background region was set to the sum of the blood vessel caliber (assumed to be 0.4 cm) 

and twice the FWHM of the tomograph in order to avoid spillover from the blood vessel 

into the background region.  All ROIs were overlaid on the dynamic PET images to 

generate the time course of the radioactivity concentration in blood and tissue. 

 

4.5 Compartmental Analysis: Sokoloff Model  

 

The MRGLc was calculated using a built in program called MetabTool in the 

ECAT/HR+.  In this program, the lumped constant (LC) is a given number in the 

calculation.  The glucose plasma concentration, CP, is entered as the measured input 

function and the k* variables in the formula of 4.7 are entered as given k* values.  The 

values are: LC: 0.520, k1 0.095, k2 0.125, k3 0.069 k4 0.0055.  The program will be 

estimating local MRGLc values and it will vary by each individual’s input function and 

imaged data.  Therefore, this is a useful method to evaluate if the corrected input function 

results in good estimations of the kinetic metabolic rates (Takikawa, 1993).  
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4.6 Results 

 

4.6.1 MicroPET acquisitions of the wrist 

 

The reconstructed wrist images using the FBP reconstruction technique are shown 

in the figure 4.2.  The image shows that you can clearly, visually delineate the artery 

from the background tissue.  Hence drawing the ROIs on these images would be a direct 

and simple way of extracting the radioactivity. The TACs from drawing ROIs on these 

arteries and the surrounding tissue is shown in figure 4.3 

 

  Figure 4.2 Sagital and transaxial view of the wrist in the MicroPET 

     

0

50

100

150

200

250

300

350

0 2 4 6 8 10
Time(minutes)

[1
8
F

] 
C

o
n

c
en

tr
a
ti

o
n

 (
n

C
i/

c
c)

TAC from tissue ROI

TAC from wrist arterial ROI

 

Figure 4.3 Time activity curves from the MicroPET images for the arterial and 

surrounding tissue 
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An ROI of the size of the wrist was drawn and radioactivity through the projection of the 

wrist was calculated as 12% of the arterial radioactivity. Furthermore, the spillover 

fraction of tissue radioactivity (shown below table 4.1) is approximately 9%.  

 

4.6.2 Correction for Partial Volume and Spillover 

 

The Derenzo and anti-Derenzo phantom pictures are shown in figure 4.4 

 

           

Figure 4.4 Derenzo and anti-Derenzo phantom used for RC calculation in the MicroPET  

 

The recovery coefficients measured experimentally are compared in figure 4.5 with those 

derived analytically for the tubes of the Derenzo Phantom. The phantom had a 4.8 mm 

diameter tube, two times the FWHM and hence the radioactivity concentration could was 

almost fully recovered (85%) in the ROIs.  Shape differences between the experimental 

points and the analytical curves may result from the approximation of the tomograph PSF 

by a Gaussian function in the simulation.  Highest RC values are obtained for the smallest 

ROIs. Furthermore, the underestimation of the true radioactivity concentration worsened 

severely with decreasing tube size.  For ROIs of diameter half of the tube, the analytical 

RC values were estimated to be 0.82, 0.76 and 0.70 for the 4.0, 3.2 and 3.0 tubes, 

respectively.  
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Figure 4.5. The recovery coefficients measured experimentally are compared with 

those derived analytically for the tubes of the Derenzo Phantom. 

 

Table 4.1 Recover Coefficient and Spill over from the phantoms 

  2 2.5 3 3.5 4 

PV 0.458 0.654 0.702 0.7632 0.82 

STD DEV 0.055 0.056 0.06 0.066 0.07 

SF 0.1209 0.102 0.0922 0.09 0.0845 

STD DEV 0.019 0.025 0.01 0.016 0.02 

 

The ROI diameter is a user-defined variable; the blood vessel caliber and spatial 

resolution of the tomograph are fixed.  For these studies, the diameter of the wrist arteries 

was assumed to be 3.0 mm. The spatial resolution of the tomograph is spatially variant; 

hence the value for the FWHM was estimated at the position of the blood vessel from the 

measurements of a line source.  The smaller ROIs produce larger RC values, but at the 

expense of a greater sensitivity to small variations in the tube diameter and increase in 

noise.  Figure 4.6 further illustrates that the choice of the ROI diameter becomes more 

critical with the PET cameras offering a better spatial resolution, at least for tubes smaller 

than twice the FWHM of the scanner.  It was also observed that for a given ROI diameter 

and blood vessel caliber, the magnitude of the partial volume correction is reduced as the 

spatial resolution of the tomograph improves. 
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Figure 4.6 Variation in the recovery coefficient with the choice of the ROI diameter for a 

tube of a particular diameter.  

 

4.6.3 Input functions direct comparisons  

 

 The corrected ROI-based input functions are compared with the directly sampled 

arterial plasma input functions in figure 4.7.  As shown in table 4.2, all ROI-based blood 

curves peaked earlier than the directly sampled curve for both the tracers.          

0

200

400

600

800

1000

1200

0 2 4 6 8 10

Time (minutes)

[1
8
F

] 
C

o
n

ce
n

tr
a
ti

o
n

 (
n

C
i/

cc
)

Image Derived Input
function 

Invasive Arterial Plasma

Input Functon

       

 



 97

0

500

1000

1500

2000

2500

3000

3500

0 2 4 6 8 10

Time (Minutes)

[1
8
F

] 
C

o
n

c
en

tr
a
ti

o
n

 (
n

C
i/

cc
)

Image Derived Input
Function

Invasive Artreial

Plasam Input Function

0

500

1000

1500

2000

2500

3000

0 2 4 6 8 10

Time (minutes)

[1
8
F

] 
C

o
n

c
en

tr
a
ti

o
n

 (
n

C
i/

cc
)

Image Derived Input

Function 

Invasive Arterial Plasma

Input Function



 98

0

500

1000

1500

2000

0 2 4 6 8 10
Time(minutes)

[1
8
F

] 
C

o
n

ce
n

tr
a
ti

o
n

 (
n

C
i/

cc
)

Invasive Arterial

Plasma Input Function

Image Derived Input

Function

 

 

0

500

1000

1500

2000

2500

3000

0 2 4 6 8 10

Invasive Arterial Plasma

Input Function

Image Derived Input

Function

 

 

Figure 4.7 Image Derived input functions derived from wrist images are compared to the 

invasive arterial plasma input functions for five subjects.  
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Table 4.2: Comparison of the input functions: Peak position, height and AUC 

 

Time to 

peak 

Peak 

Height 

AUC 

(0-2 minutes) 

 (seconds) (nCi/cc) (µCi/cc) 

    

AIF 60 994 3134 

IDIF 42.6 1094 3984 

    

AIF 30 2600 6357 

IDIF 22.8 2900 10107 

    

AIF 30 2586 6418 

IDIF 22.8 2899 5156 

    

AIF 60 1321 4060 

IDIF 42.6 1729 5822 

    

AIF 40.02 2349 7823 

IDIF 33 2670 10180 

 

A two tailed t-test with 5% significance level showed that the peak heights were 

significantly different for the IDIF and AIF.   However, the total integral under the curves 

and time to peak did not differ at p<0.05 

 

4.6.4 Metabolic rate of Glucose  

 

The IDIF and arterial blood sampled input function (AIF) was used as an input to 

Sokoloff model.  The ROIs were drawn on the thalamus for each subject in each case.  

The graph in figure 4.8 below compares the MRGLc.  

 

The error bar on the ‘invasive arterial samples’ data is the standard 8% deviation 

due to the counting statistics and scanner characteristics. The RC value (0.70) used for 

the correction of image derived TACs was based on an average size of the wrist arteries.  

This value was varied from 0.50 to 0.75 and the values of CMRglu was calculated. This 

variation is reflected in the error bars shown in figure 4.8. 
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Figure 4.8 MRGLc calculated for the 5 subjects compared for IDIF and arterial blood 

samples.    

 

4.7 Discussion 

 

The results of Sokoloff model using the image derived input function were similar 

to those obtained using the directly sampled input function, despite the peak differences 

of the two input functions.  The variation in the MCRglu due to the error in an input 

function is 8% (Huang, 1980).  Partial volume correction reduces bias in the blood TAC 

extracted from images at the expense of introducing variance.  Averaging over several 

planes and curve fitting was shown to be sufficient for data extracted from the wrist 

arteries.  The proposed method requires that ROIs of a given diameter be drawn manually 

on the blood volume image.  Small ROIs correspond to high RC values, thereby limiting 

the magnitude of partial volume correction; large ROIs are more robust to statistical noise 

and variations in the blood vessel caliber.   The choice of the ROI diameter is thus a 

compromise between these factors.  The difference in the shape of the ROI-based blood 

TAC compared to the directly sampled blood TAC probably reflects in the large part 

errors in the correction for partial volume and spillover.  To be more accurate, the 

correction should employ the actual size of the blood vessel for each individual (Strul and 

Bendriem, 1999).  This approach has been explored in the next chapter, for internal 

carotid arteries visible in the brain PET scans and the size of which was obtained from 
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the MRI scan of the same subject.  It was also seen that the directly sampled blood is 

confounded by the delay and dispersion occurring at the peripheral blood sampling site.  

The accuracy of the directly sampled blood TAC is also dependent upon the cross 

calibration between the PET camera and the radiation detector used to count the 

radioactive blood.  These problems are circumvented by the extracting the time course of 

radioactivity in the blood from the PET images, hence insuring compatibility between 

blood and tissue data.  

 

For 
18

F-FDG the difference between the plasma F-18 concentration and the one in 

whole blood can be ignored for human subjects.  This assumption was validated in a 

previous study (Gambhir, 1989) for the 120-minute time period.  Because the total scan 

duration is only 30 minutes, this assumption can be honored safely. However, because 

this is a significant consideration for the use of blood data in kinetic analyses, it is 

considered in the next chapter for two C-11 tracers. 

 

4.8 Conclusion 

 

The method presented in this chapter provides non-invasive blood input function 

for PET brain studies using a full ring wrist scanner. Since the blood input function is 

extracted from the PET images, this method removes the need for the correction for delay 

and dispersion associated with blood sampling and cross calibration. The method 

however depends on user input to delineate the wrist arteries, and is subjective. One 

drawback is that this method requires prior knowledge of the blood vessel caliber.  

Nonetheless, the characteristics of the curve and the CMRglu match closely for the IDIF 

and the AIF.  The results have thus demonstrated the use of a tomographic wrist scanner 

and compensation for the small size of the wrist arteries with respect to the resolution of 

the scanner. 
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Chapter 5  

 

Derivation of a Blood Time-Activity Curve from Brain Images 

 

5.1 Overview 

 

Aim: The purpose of the work presented in this chapter was to evaluate the feasibility of 

a non-invasive approach for obtaining a blood input function from dynamic PET brain 

studies without arterial cannulation.  

Method: The method is based on regions of interest (ROIs) drawn on the internal carotid 

arteries visible in the human PET brain images.  The use of a recovery coefficient for 

compensation of lost counts (discussed in the previous Chapter 4: Tomographic Images 

of the Human Wrist using a small animal scanner) was extended to the carotid arteries 

and the human ECAT EXACT HR+ scanner, for the extraction of a non-invasive image 

derived input function (IDIF).  The ROI-based method used for partial volume and 

spillover correction was verified to be accurate when applied to glass tubes filled with a 

radioactive solution.  Five subjects injected with [
11

C]raclopride and four subjects 

injected with [
11

C]clorgyline were studied in the high resolution, high sensitivity ECAT 

EXACT HR+ tomograph after the intravenous injection of the tracers.  The time course 

of radioactivity in cerebral blood, corrected for partial volume, spillover and metabolites 

of the tracer (using venous samples), was compared to that in the arterial blood sampled 

on-line.  The tissue curves were first fitted with compartmental models.  This tissue data 

were also analyzed using two-tissue compartmental model for irreversible tracers and 

multiple time graphical analyses with the blood data.  The results of the compartmental 

and graphical analyses on PET data using the IDIF were compared with those obtained 

using the directly sampled arterial plasma input function (AIF) in order to evaluate the 

accuracy of the newly proposed method. 

Results: The shape of the two input functions matches closely, but the IDIF peaked 

earlier and higher than the AIF.  The integral over the curve as well as the kinetic 

parameters calculated for both tracers are not significantly different (p<0.05)  
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Conclusion: This method of non-invasively obtaining a blood input function for 

quantitative analysis of PET brain data provides a compromise between simplicity and 

accuracy adequate for use with the clinical population. 

 

5.2 Introduction  

 

There were two main reasons for applying the technique of IDIF to dynamic 

human brain images 

1. Theoretically, the use of a recovery coefficient should suffice for partial volume 

correction, if the three dimensional orientation of the object and system 

characteristics are defined.  This chapter investigates the use of a recovery coefficient, 

as described in the previous chapter, for obtaining the radioactivity concentration in 

the cerebral blood from ROIs drawn on the internal carotid arteries in humans.  The 

size of these arteries was exclusively obtained for each subject from their respective 

MRI scan. This will help in validation of simple ROI analysis using a major blood 

vessel in the field of view. 

2. To make complete use of an image derived TAC, metabolites of the parent radiotracer 

have to be corrected for, since a PET image cannot differentiate between a tracer and 

its metabolites.  For the MicroPET studies, a wrist could only be scanned during the 

uptake period of [
18

F]FDG, because of the placement restrictions in using the HR+ 

scanner and MicroPET simultaneously.  Hence no other tracer could be tested for the 

wrist scans.  Also, for the duration of the wrist scan, this glucose analog does not 

metabolize and hence does not require additional corrections (Chen, 1998).  It would 

be reasonable for the scope of this thesis to explore and evaluate the behavior of IDIF 

technique for different tracers, in an effort to relate the correction technique with the 

tracer’s behavior.  Hence, two 11C radiotracers, [
11

C]raclopride and [
11

C]clorgyline 

were utilized to investigate the use of venous samples to correct for the presence of 

metabolites of the authentic tracer in the blood.  Venous samples were obtained at 1, 

5, 10 and 30 minutes.  These samples were used to estimate % unchanged radiotracer 

for the IDIF and past 5 minutes they were used to calibrate the tail of the IDIF.  
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5.3 Materials and Methods 

 

5.3.1 Correction for Partial Volume and Spillover on ROIs 

 

The carotid measure 4 to 5 mm in diameter and the measured spatial resolution of 

the ECAT EXACT HR+ in the center of the field of view is 6.8mm. The equation used to 

correct for the effects of partial volume and spillover, as discussed in chapter 4, will be 

used to recover the lost counts.      

                          

      A(t)= RC x Cp(t)+SF x B(t)             (5.1) 

 

A(t) is the concentration of radioactivity in the carotid artery as measured by the scanner 

and is assumed to be a linear combination of two components: the true radioactivity from 

the from the blood vessel (Cp(t)) and the radioactivity from the surrounding tissues (B(t)).  

RC and SF are correction factors for partial volume and spillover fraction from the 

surrounding tissue respectively.  

 

5.3.2 Data Acquisition 

 

5.3.2.1 Phantom data 

 

The accuracy of the RC estimates was assessed by imaging a phantom with three 

glass tubes of inner diameters 3, 4.2, and 6 mm in the ECAT EXACT HR+ camera 

(CTI/Siemens, Knoxville, TN, USA) (figure 5.1).  The tubes were filled with an F-18 

solution of approximately 1 mCi/cc at the start of the first scan.   It was scanned for 20 

minutes and the images were reconstructed using the 3D filtered back projection 

algorithm with ramp filters set at Nyquist cut-off frequency.  The images were corrected 

for attenuation and scatter.  Referring to the original definition of Hoffmann et a1(1979), 

the RC values were calculated for each tube as the ratio of the radioactivity concentration 

measured in ROIs of diameter ranging from 1 to 4 mm over the decayed radioactivity 

concentration of the F-18 solution. The measured RC values were compared with those 
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predicted by the simulation described in Chapter 4, which was performed for each tube 

and each ROI with FWHM = 6.8 mm corresponding to the spatial resolution of the 

ECAT/HR+ tomograph.  

 

Figure 5.1: Schematic diagram of the phantom used for estimating RC for the ECAT 

HR+. The phantom consists of a 6mm, a 4.2 mm and two 3 mm tubes.  

 

5.3.2.2 Human data 

 

PET Scans  

Nine subjects underwent a sixty minute PET study (ECAT EXACT HR+, 

CTI/Siemens, Knoxville, TN, USA) after the intravenous injection of 5-7 mCi of 

[
11

C]raclopride or [
11

C]clorgyline.   Sequential PET scans were obtained immediately 

after injection for a total of 60 min with the following frames: 1 x10 seconds, 12 x 5 

seconds, 1 x 20 seconds, 1 x 30 seconds, 4 x 60 seconds, 2 x 120 seconds and 10 x 300 

seconds.  The images were reconstructed using filtered back projection with a Hanning 

filter giving a measured image resolution of 6.8 mm in the center of the field of view.  

Every subject had two catheters inserted for each scan; a standard arterial catheter in the 

radial artery for the sampling of arterial blood and a second catheter in the antecubital 

vein for radiotracer injection.   During the PET scan, the arterial blood was sampled by 

using an automated blood-sampling device (Ole Dich, Denmark), which draws a 0.4 ml 

samples of blood every 2.5 seconds for the first 2 minutes.  Blood samples were then 

drawn manually every minute from 2–6 min, then at 8, 10, 15, 20, 30, 45, and 60 min.  

Each arterial blood sample was centrifuged and a sample of plasma assayed in a well 
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counter.  Plasma samples at 1, 5, 10, 20, 30, 45, and 60 min were analyzed for 

[
11

C]clorgyline and [
11

C]raclopride (Alexoff, 1995) 

 

Assay of parent radiotracer in arterial and venous blood   

For all the subjects a second venous catheter was inserted to draw blood at 1,5,10 

and 30 minutes.  For both the arterial and venous samples, plasma was analyzed for the 

percentage of unchanged radiotracer using a Sep-pak separation of the labeled fractions 

in the plasma (Alexoff, 1995; Appendix C).  A comparison was made of the percentage 

unchanged radiotracer obtained with plasma samples obtained through the arterial line 

with those obtained from the venous line. 

 

Plasma to whole blood ratio 

The radioactivity concentration obtained from arterial blood sampling 

corresponds to the plasma input function, whereas IDIF is a whole blood radioactivity 

profile.  If a radiotracer does not bind to the erythrocytes, then the concentration of the 

tracer in plasma can be obtained as a ratio of plasma to whole blood (Rp/wb) of the whole 

blood concentration.  To correct for the fraction of radioactivity in whole blood that is 

from plasma, we calculated the ratio of the radioactivity concentration at one minute in 

plasma to that in whole blood, assuming that radiotracer equilibrium is achieved rapidly 

between the whole blood and plasma.  Thus the plasma radioactivity is equal to Rp/wb 

times the true radioactivity in the blood pool (after partial volume corrections).  

 

C’p(t) =  Rp/wb x Cp(t)                                                       (5.2) 

 

MRI acquisitions: 

MR images of the nine subjects were obtained with a Sigma 1.5-T system (GE 

Medical Systems, Milwaukee, Wis). For rapid orientation, a sagittal section (spin echo 

[SE] 600/20 [repetition time msec/echo time msec] was obtained to localize a fiducial 

marker 2 cm above and parallel to the canthomeatal line.  T1-weighted axial sections (SE 

600/20) were acquired with a 5-mm thickness and a 2-mm intersection skip in an oblique 

plane, parallel to the marker. Axial proton-density (2,500/30) and T2-weighted (2,500/90) 
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sections were acquired through the brain without an intersection skip in the same plane 

T1-weighted axial sections. The data were displayed on a 256 x 256 matrix and used to 

measure the size of the internal carotid arteries for each subject.  

 

5.3.3 Data Analysis 

 

5.3.3.1 Definition of the regions of interest 

The PET and MR images were manually co-registered (figure 5.2) using PMOD 

(PMOD Technologies Ltd).  For the PET images, frames were summed over the period of 

10s to 50s and examined visually for carotid arteries.  On this summed image, circular 

ROIs were drawn manually around the voxels having the highest radioactivity 

concentration at the expected location for the carotid arteries.  In order to correct for the 

partial volume and spillover effects relating to the blood vessel, a background ROI was 

delimited as an annulus (outer ellipse area=13.2 cm
2
, inner circle diameter=1.5 cm) 

around the carotid arteries. The diameter of the inner circle of the annulus defining the 

background region was set to the sum of the blood vessel caliber (assumed to be 0.5 cm) 

and twice the FWHM of the tomograph in order to avoid spillover from the blood vessel 

into the background region (figure 5.3). Elliptical ROIs were also drawn around the 

cerebellum (area = 12.7 cm
2
, one on each side per plane) and the putamen, caudate, 

thalamus and anterior cingulate (area = 1.2 cm
2
, two on each side per plane) on four to 

six consecutive planes.   These ROIs served as target regions for the compartmental and 

graphical analyses.   All ROIs were overlaid on the dynamic PET images to generate the 

time course of the radioactivity concentration in blood and tissue.   The time course of 

radioactivity concentration measured from the blood vessel was corrected for partial 

volume and spillover using equation (5.1) with the time course of radioactivity 

concentration in the background.   
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Figure 5.2 a. Left: MRI scan showing the carotid arteries Center: PET image summed for 

first 40 seconds. Right: Coregistered PET-MR image 

 

Figure 5.3: Region of interest on the co-registered PET-MRI image. The smaller ROI is 

used to estimate the arterial activity, and the bigger ROI is for tissue spillover estimation. 

 

5.3.3.2 Noise reduction 

 

Noise in the plasma input function propagates to the fitted tissue TACs through 

the convolution operation, therefore increasing the uncertainty on the parameter estimates.   

Two methods of reducing the noise level in the ROI-based blood TAC were investigated: 

 

1. Average ROIs over several planes: The caliber of the carotid arteries was measured to 

be relatively constant over 5-6cm, thereby allowing ROIs drawn on several consecutive 

planes (up to 10 on the ECAT/EXACT HR+) to be averaged. 
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2. Fit the blood TAC with a mathematical function: Sum of exponentials: 

 

y(t) = A1(t) exp(+λ1t)+A2(t) exp(-λ2t)+A3(t) exp(-λ3t)…………………5.2 

 

The blood TAC was manually shifted to the origin such that the delay parameter T 

can be set to zero.  This function with six parameters (three A's and three λ's) 

mathematically describes a four-compartment model having a pair of repeated eigen 

values.  This model approximates the behavior of a radiotracer in the blood circulation, 

having been injected in a venous space and being sampled in an arterial space after 

having transited through tissue vascular and interstitial spaces (Feng et al, 1993). 

 

5.3.3.3 Comparisons of input functions  

 

Direct Comparisons:  

The ROI-based TACs were then corrected for blood partition and radiolabeled 

metabolites using venous samples, in order to be used as plasma input functions to the 

cerebellum, striatum and thalamus. After these corrections, the peak height, time to peak 

and total integral of the ROI-based blood IDIF were compared with those of the directly 

sampled arterial plasma input function.  

 

Comparisons of kinetic terms 

 The effects of using the input functions derived from either arterial plasma 

sampling or the PET images on the results of both compartmental and graphical analyses 

were also evaluated.  A three compartment irreversible model was used for 

[
11

C]clorgyline, to estimate K1, the plasma to organ transfer constant, which is related to 

blood flow, k2, which is related to transfer of tracer from organ to plasma, and k3 and the 

combination model parameter λk3, which is proportional to MAO A.  λ is defined as 

K1/k2, and is independent of blood flow.  The graphical analyses technique, Logan plot, 

was generated for determining the distribution volume (DV) for [
11

C]raclopride. 
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5.4 Results  

 

5.4.1 Comparison of the arterial and venous radioactivity concentration 

 

A comparison of total carbon-11 in venous and arterial plasma samples vs. time 

showed that at 5 minutes the venous and arterial values becomes nearly identical (figure 

5.4).  Thus venous blood samples may be used to obtain the input function beyond 5 

minutes.  Because of technical difficulties, there were no samples obtained between 1 and 

5 minutes. 
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Figure 5.4: Comparison of an arterial TAC with venous radioactivity concentration for 

[
11

C]raclopride at 1, 5, 10 and 30 minutes. 

 

5.4.2 Comparison of % unchanged radiotracer in arterial and venous plasma 

samples: 

 

Table 5.1 shows the average percentage difference between arterial and venous 

metabolite samples for both the radiotracers at various times.  The values of percentage 

difference in the table represent the average of four subjects for [
11

C]clorgyline and five 

for [
11

C]raclopride.  The difference in the values between arterial and venous is not 

significantly different (p<0.01) in this small sample.  It seems likely from these 

preliminary results that it will be possible to substitute venous samples for arterial 
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samples when doing the kinetic analysis.  The graph in figure 5.5 shows arterial and 

venous % unchanged values for a study using for [
11

C]raclopride and [
11

C]clorgyline. 

 

    Table 5.1: Average % difference between arterial and venous metabolite samples 

 [
11

C] Clorgyline 

(n=4) 

[
11

C] Raclopride 

(n=5) 

Time (min) % Diff Avg % Diff Avg 

1 -0.5 -1.8 

5 0.5 -0.5 

10 -4.25 -2.6 

30 3.75 -0.75 
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Figure 5.5: The % unchanged radiotracer values of arterial and venous plasma samples 

for [
11

C] Clorgyline (top) and [
11

C] Raclopride (bottom). The observed differences 

between the two samples are not statistically different (p=0.01) 

 

5.4.3 Correction for Partial Volume and Spillover 

 

The recovery coefficients measured experimentally are compared in figure 5.6 

with those derived analytically for a set of 3 glass tubes of varying diameters.  None of 

the tubes had a diameter two times the FWHM and hence the radioactivity concentration 

could not be fully recovered in the ROIs.  Shape differences between the experimental 

points and the analytical curves may result from the approximation of the tomograph PSF 

by a Gaussian function in the simulation.  Highest RC values are obtained for the smallest 

ROIs.  Furthermore, the underestimation of the true radioactivity concentration worsened 

severely with decreasing tube size.  For ROIs of diameter equal to that of the tube, the 

analytical RC values were estimated to be 0.34, 0.19 and 0.16 for the 6.0, 4.2 and 3.0 

tubes, respectively.  

 

The ROI diameter is a user-defined variable; the blood vessel caliber and spatial 

resolution of the tomograph are fixed.  For these human studies, the diameter of the 

carotid arteries was obtained from the MR images of these subjects.  The carotid 

measured 4 to 5 mm in diameter.  The spatial resolution of the tomograph is spatially 

variant; hence the value for the FWHM was estimated at the position of the blood vessel 

from the measurements of a line source.  As shown in figure 5.7 a, the smaller ROIs 

produce larger RC values, but at the expense of a greater sensitivity to small variations in 

the tube diameter.  Figure 5.7 b, further illustrates that the choice of the ROI diameter 

becomes more critical with the PET cameras offering a better spatial resolution, at least 

for tubes smaller than twice the FWHM of the scanner.  The figure also underlines the 

fact for a given ROI diameter and blood vessel caliber, the magnitude of the partial 

volume correction is reduced as the spatial resolution of the tomograph improves. 
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Figure 5.6 Comparison between experimentally measured (symbols) and analytically 

derived (lines) recovery coefficients for tubes of varying diameters 
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Figure 5.7 a) TOP: Variation in the recovery coefficient with a) the uncertainty in the 

diameter for the ECAT/HR+ (FWHM 6.8mm), and b) BOTTOM: the choice of the ROI 

diameter for a tube of 5mm in diameter. 

 

Using MR images of each subject, the size of the artery was estimated and the recovery 

coefficient was calculated using the Gaussian convolution model.  The diameter of the 

artery ranged from approximately 4.5 mm to 5.6 mm and hence the RC varied from 0.28 

to 0.34.  The value of Rp/wb at one minute was approximately 0.75 for [
11

C]clorgyline and  

0.65 for [
11

C]raclopride. Table 5.2 shows the value of recovery coefficients of various 

sizes of the tubes for an ROI of half the diameter of the tube.  

 

 

Table 5.2. Recovery coefficients of different size tubes for a ROI of half the diameter of 

the tube. 

 

Vessel Diameter (mm) 3 4.2 6 

Simulation 0.22 0.26 0.37 

Experimental (tube) 0.21 0.255 0.36 
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5.4.4 Image derived input function 

 

The TAC for 
11

C in whole blood consisted of a part containing the peak values of 

the radioactivity concentration which was extracted from IDIF up to 5 minutes, and the 

tail which was the concentration as sampled from the venous blood from 5 minutes to the 

end of the scan.  Figure 5.8 shows the carotid artery TAC derived from dynamic brain 

images and the spillover curve extracted from drawing ROIs around the carotid arteries.  

The TAC from arterial samples is also shown. 
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Figure 5.8: Plot shows the TAC obtained from arterial plasma sample(- - -), image 

derived TAC from the carotid artery ROI without corrections for partial volume spillover 

and plasma to whole blood ratio(       )and the spillover obtained from drawing ROIs 

around the carotid artery(. . . ) for  [
11

C]clorgyline (top) and [
11

C]raclopride (bottom) 
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5.4.5 Direct Comparison of Input functions 

 

TAC corrected using RC values:  

Using MR images of each subject the size of the artery was estimated and the 

recovery coefficient was calculated using the Gaussian convolution model. The diameter 

of the artery ranged from approximately 4.5 mm to 5.6 mm and hence the RC varied from 

0.28 to 0.34.  The plasma to whole blood ratio was approximately 0.75 for 

[
11

C]clorgyline and 0.65 for [
11

C]raclopride. The image derived TAC was then corrected 

for the fraction of parent radiotracer as measured in venous blood samples. Figure 5.9a 

compares the arterial plasma input function (AIF) to IDIF after accounting for partial 

volume effects, plasma to whole blood ratio, spillover effects and % unchanged 

radiotracer.  The major correction factor was the partial volume correction.  The spillover 

effect at peak time is very small ([
11

C]raclopride: 8% ± 2% of the total value, [
11

C] 

clorgyline: 12.5%±4% of the total value) and could be ignored.  
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Figure 5.9a Plot compares the image derived TAC after corrections (partial volume 

effects, plasma to whole blood ratio and % unchanged radiotracer) with the invasive 

arterial samples for [
11

C]clorgyline (top) and [
11

C]raclopride (bottom) 

[11C] Clorgyline

0

200

400

600

800

1000

1200

1400

0 2 4 6 8 10
Time (minutes)

[1
1
C

] 
C

o
n

ce
n

tr
a
ti

o
n

 (
n

C
i/
cc

)

Arterial Blood Samples

IDIF+Venous: Sum of

exponentials

 

Figure 5.9b: Comparison between the fitted curves (sum of exponential) to the corrected 

ROI-based blood time-activity curve 
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The plot shows that the IDIF peaks sooner than the invasive AIF. The IDIF for 

[
11

C]clorgyline peaked approximately 15 (+/- 3.5) seconds earlier and [
11

C]raclopride  

peaked approximately 12 (+/- 2.5) seconds earlier.  Plots in figure 5.10 show the peak 

heights for both tracers.  The peak heights and time to peak for the IDIF and the AIF 

were significantly different at the 5% significance level.  The peak of the AIF is dispersed 

due to the mechanical sampling of the arterial blood.   Thus the AIF, which is assumed to 

be the gold standard does not accurately capture the time of the peak. The total integral 

under AIF and IDIF curves was computed.  There was no difference between the integral 

under the AIF and IDIF curves (p<0.05).  Figure 5.11 shows a regression plot for the 

integral under the curve of a [
11

C]raclopride study.  
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            Figure 5.10: Peak differences between IDIF and AIF 
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Figure 5.11: Regression Plot for a [
11

C]raclopride study comparing the integral under 

the curve for AIF and IDIF. 

 

Table 5.3: Comparison between the shape of the directly sampled and the corrected ROI-

based blood time activity curves for a) [
11

C]clorgyline b) [
11

C]raclopride 

Peak Position 
a
 

(s) 

Peak Height 
b
 

(nCi/cc) 

Total Area 
b
 

(mCi.s/cc) 

a. Clorgyline 

Directly Sampled blood TAC 

34.98 1032 2.1 (±0.322) 

ROI-based blood TAC: Average over several planes  

32.5(-2.48) 1190(+15) 2.9 (±0.704) 

ROI-based blood TAC: Fitted to sum of exponentials 

30.5(-2.) 1150 (+17.2) 2.7(±0.602) 

b. Raclopride 

Directly Sampled blood TAC 

30 4779   7.23 (±1.01) 

ROI-based blood TAC: Average over several planes 

17.5 (-12.5) 4928 (+3)       7.81(±1.3) 

ROI-based blood TAC: Fitted to sum of exponentials 

      16.25 (13.75)         5000 (+5)        7.91(±1.5) 
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a
 Delay (in s) = ROI-based – Directly sampled  

b 
Difference (in %) = 100 * (ROI-based – Directly sampled)/ Directly sampled 

 

5.4.6 Compartmental models and Graphical Analyses 

 

5.4.6.1 [
11

C] Clorgyline 

 

For validation of the noninvasive approach, the AIF and IDIF+venous were used 

for kinetic analysis. The model parameters of thalamus and anterior cingulate for 

[
11

C]clorgyline are given in the table 5.4 below.  

 

Table 5.4: Kinetic terms for [
11

C]clorgyline using the  arterial plasma input function and 

the image derived input function (n=4) 

 

 Thalamus K1 λk3 

 Arterial Samples 

(+/- SD) 

0.5 

(0.07) 

0.52 

(0.045) 

IDIF+venous 

 

 Average over  

planes (+/- SD) 

0.46 

(0.058) 

0.47 

(0.031) 

 Sum of  

 Exponential  (+/- SD) 

0.42 

(0.021) 

0.48 

(0.014) 

 

 Cingulate K1 λk3 

 Arterial Samples 

(+/- SD) 

0.43 

(0.05) 

0.42 

(0.042) 

IDIF+venous 

 

 Average over  

planes (+/- SD) 

0.37 

(0.045) 

0.39 

(0.030) 

 Sum of  

 Exponentials  (+/- SD) 

0.38 

(0.045) 

0.37 

(0.030) 
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K1 is lower when IDIF is used, because the integral under the curve is higher for 

the IDIF.  The model term k3 for the AIF and IDIF agree well. λk3 for IDIF is 7 % lower 

than the invasive AIF for thalamus and cingulate gyrus.  The standard error on k3 is on 

the order of 8%.   

 

5.4.6.2 [
11

C] Raclopride 

  

 Logan plots were used to calculate  DVs for the caudate, putamen and thalamus 

regions and these values are shown in table 5.5.  

 

Table 5.5: The Distribution Volumes (DV) for [
11

C]raclopride using the invasive arterial 

plasma input function and the image derived input function. ( n=5) 

  IDIF+venous IDIF+venous 

 Arterial Samples Average over  

planes 

Sum of  

 Exponentials 

Thalamus 

(+/- SD) 

0.47 

(0.048) 

0.50 

(0.0378) 

0.52 

(0.0378) 

Caudate 

(+/- SD) 

1.19 

(0.0341) 

1.23 

(0.021) 

1.13 

(0.021) 

Putamen 

 (+/- SD) 

1.25 

(0.061) 

1.30 

(0.035) 

1.32 

(0.035) 

 

A two-tailed paired t-test, for kinetic terms of [
11

C]clorgyline and [
11

C]raclopride  

showed no significant differences (p=0.05) 

 

5.5 Discussion  

  

In spite of the need for corrections, the IDIF shows remarkable similarity to the 

AIF.   To summarize, the correction to the image derived TAC involved:  

1. Correcting the carotid artery input function using a recovery coefficient for the 

scanner resolution and size of the artery 
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2. Subtracting the tissue background activity concentration, obtained from drawing a 

larger ROI around, from the carotid artery concentration.   

3. Scaling this curve to the plasma to whole blood ratio.  This is a correction factor 

for the fraction of radioactivity in whole blood that is from plasma.  

4. Correcting the TAC for the % unchanged radiotracer to obtain an input function.  

 

The use of recovery coefficients allows the estimation of the counts lost due to the 

small size of the internal carotid arteries.  However, at longer times, this correction seems 

to over-estimate the radioactivity concentration and hence use of venous samples from 5 

minutes onwards was employed.  The kinetic parameters for the combined IDIF were 

compared to the AIF in the tables 5.4 and 5.5. The parameters compare well except the 

K1 values. This difference is attributed to the dispersion of the peak of the AIF; since K1 

depends on peak of the input function. Simulation studies have shown that 

underestimation of an area under the curve (as is the case with the invasive method 

compared to the IDIF approach) for the first 20 minutes by 20% to 50% results in 8% to 

22% overestimation of K* values when the graphical analysis (Patlak et al., 1983) in the 

-[
11

C]methyl-tryptophan ( -MTrp) method (Nishizawa et al, 1998) is used.  

 

Another consideration for accurate estimation of an IDIF is to compensate for the 

underestimation of the peak of the input function from dynamic images, due to the small 

size of the carotid arteries with respect to the scanner’s resolution.  Recovery coefficients 

have been used successfully to correct for partial volume effects.  However, an MRI scan 

was used to estimate the approximate diameter of the internal carotid artery for each 

subject.  The RCs ranged from 0.28 to 0.34 for the 9 subjects studied.  In the absence of 

an MRI scan, an approximate estimate for RC would lead to an error of 13% in the value 

K1.  

 

  The approach used here was to measure the peak of the TAC by drawing ROIs on 

the internal carotid arteries from dynamic PET brain images and to use venous samples to 

provide a good fit to the input function beyond 5 minutes as well as to analyze for the 

fraction of parent radiotracer.  There were a few important observations from the image 
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derived input functions.  In all subjects, the TAC from the arterial plasma samples lagged 

behind the TAC from the carotid artery images (figure 5.12).  A temporary increase in 

radioactivity in the image derived TAC at about 1.5 minutes was observed which can be 

attributed to recirculation.  This feature was missing in the AIF as the dispersion in the on 

line sampling of arterial blood samples is so great that it causes a delay of the peak and 

masks the recirculation of the radiotracer.  An overestimation of the tail of the IDIF was 

also observed. This observation is due to the spillover from the surrounding tissue which 

accumulates 
11

C with time. This may be due to the overestimation of the scaling factors 

and localization of the radiotracer.  Since venous samples will be used past 5 minutes for 

the two tracers, this is not a concern.  There were no samples obtained between 1 and 5 

minutes and hence a time point before 5 minutes cannot be used.  Also as illustrated in 

figure 5.9b, the sum of exponentials approximated the peak, shoulder and tail closely; 

however the fitted cures were dependent on the initial values.  
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comparison to circulation times.  A direct comparison between the percent unchanged 

tracer for these two radiotracers showed there was no significant difference between the 

fraction of unchanged radiotracer in arterial and venous blood.  Note that these 

preliminary data represent only two radiotracers, [
11

C]clorgyline and [
11

C]raclopride.  

Because all tracers behave differently in a biologic environment, this has to be ensured 

for any other tracer.  

 

5.6 Conclusion 

 

This chapter demonstrated that less invasive estimation of the input function 

(obtained using IDIF for the first five minutes + venous samples past five minutes) is 

possible using an equation that corrects for partial volume equation for IDIF derived from 

carotid artery for [
11

C]clorgyline and [
11

C]raclopride and venous samples for % 

unchanged radiotracer.  For these radiotracers arterial and venous are the same after 5 

min, making it appropriate to substitute invasive arterial samples with the less invasive 

venous samples.  Venous samples also allow metabolite correction which is needed for 

quantification of most radiotracers.  Even though IDIF peaks earlier and is larger, no 

statistically significant differences were observed for integral under the curve and kinetic 

parameters.  However, the IDIF gives a different; perhaps more accurate estimate of K1, 

as it is free from dispersion and delay errors.  Anatomical images of the subjects made a 

simple Gaussian simulation feasible to individually correct for partial volume effects.  

The spillover from surrounding tissue was small over the first 5 minutes and thus the 

IDIF could be used for the first 5 minutes after which venous samples will be used for the 

remainder of the study. 
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Chapter 6  

 

Comparison of Methods Studies 

 

It has been the aim of this thesis to use dynamic brain images for the estimation of 

a whole blood time TAC.  This curve is then corrected for the presence of metabolites of 

authentic radiotracer to obtain an input function.  Figure 6.1 is an illustration of this 

process.  This chapter relates the three methods studied for determining the input function, 

in terms of their similarities, differences and constraints  
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physiologic parameters.  It is very obvious that the quality of the PET data directly affects 

the reliability of the estimated model parameters.  The radioactivity concentration 

extracted from blood pools in dynamic PET images corresponds to the time course of 

total radioactivity in whole blood.  This TAC can be used as an input function for kinetic 

analyses only for tracers that are exchanged rapidly and distributed equally in plasma and 

erythrocytes, as is approximately the case for 1-[18F] flouro-2-deoxy-D-glucose (FDG) 

(Chen, 1998).  However, radiotracers that either equilibrate slowly between blood 

components and/or are actively concentrated by or excluded from erythrocytes require 

that the radioactivity concentration measured in whole blood be transformed into the 

radioactivity concentration in plasma.  The PET study must then be supplemented by 

blood samples that are drawn at discrete times and centrifuged in order to measure the 

radioactivity in plasma.  If, in addition, the radiotracer is metabolized in peripheral tissue, 

blood sampling cannot be avoided regardless of the kinetics of equilibration of the 

radiotracer in whole blood.  More blood samples are drawn and assayed biochemically in 

order to determine the contribution of the various radiolabeled compounds to the 

measured radioactivity in plasma.  As seen in the preceding chapters, the processing of 

these blood samples typically involves multiple steps, thereby making the procedure time 

consuming and the measurements prone to noise.  Only a few blood samples can thus be 

analyzed for each PET study and one typically has recourse to exponential and/or 

polynomial functions in order to interpolate between and extrapolate from these data 

points. 

 

The total radioactivity concentration in whole blood is usually corrected in two 

independent steps, first to yield the total radioactivity concentration in plasma, and 

second to obtain the parent radiotracer concentration in plasma.  For both these 

corrections, the use of venous plasma samples has been proposed for extrapolation of the 

incomplete blood data over the duration of the PET study.  The possibility of reducing the 

number of samples taken from a subject is tested.  These samples are invasive, less in 

comparison to arterial samples.  Chapter 5 has shown validation of the use of these 

samples, hence making the use of IDIF complete.  However, it should be noted that this is 

shown only for the use of 11C tracers, [
11

C]raclopride and [
11

C]clorgyline  
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The peak of the input function was estimated from dynamic images.  Three PET 

imaging systems were used for this purpose.  The result of each is compared in terms of 

feasibility, errors and constraints are compared.  

 

Table 6.1 Comparison of advantages and disadvantages of methods related to this thesis 

 

 Advantages Limitations 

Invasive 

Arterial 

sampling 

Good timing resolution 

Does not require corrections based on 

scanner characteristics  

Invasive 

Delay and dispersion  

Technical difficulties 

 

Wrist Scanner 

(+Venous 

samples) 

Non-invasive 

Independent timing resolution.  

Venous  catheter placement is easy 

Portable and stand alone scanner 

Less tissue attenuation   

Partial volume effects  

Calibration needed 

Requires good enough sensitivity  

Whole blood TACs only 

Requires shielding 

 

Dynamic Brain 

Images 

(+Venous 

samples) 

Good timing resolution  

Non-invasive.  

Venous  catheter placement is easy 

No extra hardware required, hence 

most economically feasible 

Partial volume effects 

Whole blood TACs only 

(need an MRI scan for each 

subject to estimate the artery size) 

Needs a major blood vessel in the 

field of view 

 

 

6.2 Comparing the MicroPET scanner and Wrist Scanner 

 

6.2.1 Considerations for a full ring tomograph 

 

Transitioning from planar detector to a full ring system will introduce factors that 

affect image quality and radioactivity quantification.  One factor is the parallax error, 

which is often the dominant error for such high-resolution systems.  It degrades the image 

resolution caused by the penetration of the photons into crystals.  In detectors that lack 

depth of interaction measurements, the depth at which the photon was stopped cannot be 

easily established, leading to the association of the event with an incorrect LOR when the 

photons enter the crystal at an oblique angle.   Resolution gets worse as the source is 

moved closer to the edges of the FOV.  Hence, the parallax error becomes significant if 

the object fills the FOV of the scanner, as is the case with the wrist scanner.  It is also 

observed that the tangential resolution increases with radius faster than radial resolution, 
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in contrast to what is expected from parallax.  This could be related to the trapezoidal 

shape of the coincidence aperture function between opposite detectors when away from 

the center. 

 

6.2.2 Full Ring Wrist Tomograph: Monte Carlo Simulations 

A full ring tomograph, with a 2.6 mm resolution was able to distinguish between 

the wrist arteries and veins.  A simple recovery coefficient enabled the correction for 

partial volume effects, the main concern for extracting a blood TAC from dynamic 

images.  This section reports on the Monte Carlo simulation studies for a 16 detectors, 7.5 

cm diameter full ring tomograph.  Simulation of a PET system was first validated by 

comparing system sensitivity, between simulated and real results for the 4 detector 

prototype.   

 

The Monte Carlo toolkit GATE (Jan, 2003) based on GEANT4 is dedicated to 

nuclear medicine emission tomography simulations and has been successfully used to 

model different emission tomographs, in particular PET systems (Rey 2003, Rannou 

2004, Jan 2005).  GATE includes the possibility of precisely describing the detector 

geometry, explicitly modeling radioactive emissions and dead-time effects and handling 

of output data as signal pulses in the same versatile way as data processing in detectors. 

 

GATE simulates generation, tracking and annihilation of positrons. The range of 

the positron is simulated as well as the γ –γ non-collinearity.  In GATE simulations, two 

types of sources were considered: an ‘18F source’ simulating all the physical processes 

involved during emission and interaction of positrons and a ‘back-to-back source’ with 

two 511 keV gammas directly emitted at 180◦ from one another.  Photoelectric effect, 

Compton and Rayleigh interactions of the photons in the phantom, air, inner cap, 

shielding and detectors are modeled with a realistic description of geometry and materials 

of the system. The position of each event is calculated using an energy-weighted centroid 

calculation of the positions of the successive energy deposits by interactions of photons 

in crystals.  Figure 6.2 illustrates the different steps of the simulation of the Wrist 

Scanner system using GATE.  A 20 ns coincidence window was used to collect 
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coincidence events.  A non-paralysable dead time for both prompt and delayed events 

was used to simulate events lost by the data processing unit. Each LOR was recorded as a 

pair of photons with associated crystal position and energy in a list-mode format. 

Coincidence pairs were re-arranged in list-mode format or sinograms as needed. 

 

 

 

 

 

 

 

 

 

 

                Figure 6.2: Simulation Design 

 

System sensitivity 

Measurements and simulations of absolute system sensitivity were performed for 

the 4 detector using a 
68

Ge point source (2 mm inner diameter and 1 mm wall thickness) 

of 0.5 mCi.  It was positioned in the centre of the field of view of the scanner.  Sensitivity 

was defined as the ratio of the number of detected true coincidence events over the 

number of positron emitting decays from the source during the acquisition time.  

Acquisition was performed for lower energy thresholds set to 250 and a fixed upper 

energy threshold of 650 keV.  The measured sensitivity for the 4 ring detector was 0.2% 

and that for the simulated four detector prototype was 0.12%.  This difference may be 

because the threshold on each channel could not be adjusted. The fact that the low 

threshold will cause channels with higher gain to detect a number of scattered photons 

gives a higher sensitivity for the Wrist Scanner.  Table 6.2 shows simulated sensitivities 

of the 16 ring tomograph system for a point source located at the centre of the FOV as a 

function of the lower energy threshold. 

 

Source β+: 

geometry, type, 

activity, half-

life, 

decay time, 

annihilation. 

 

Photons: 

1. Acolinearity, 

direction 

2. Interactions in 

medium 

3. Detection 

 

Singles: 

1. Preliminary Energy 

resolution  

3. Low energy 

threshold 

4. Corrected energy 

resolution  

 

Coincidences: 

1. Coincidence 

window 

2. Delayed 

window 

Dead time: 

Non-paralysable 

dead time 

 

Lower and 

Upper Energy 

Thresholds 

 

Storing 

list mode 

data 
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      Table 6.2 Simulated estimates of the Wrist Tomograph Sensitivity 

 

Energy Window 

(keV) 

Simulated Sensitivity  

(%) 

150-650 0.32 

250-650 0.27 

350-650 0.26 

 

 

Spatial resolution 

 

For the wrist tomograph, the spatial resolution was compared in the axial, radial 

and tangential directions for simulated data at different positions in the FOV.  This was 

then compared to the MicroPET R4 resolution.  All measurements were carried out with 

an energy window set to 250–650 keV.   For transverse resolution measurements, the 

point source was placed in different radial distances in the horizontal as well as in the 

vertical directions. 

 

Table 6.3: Simulated resolution of the Wrist Tomograph compared with measured 

simulations of the MicroPET 

 

Spatial Resolution 

FWHM(mm) 

MicroPET  

(measured) 

Wrist Tomograph 

(simulated) 

Radial  1.8 1.79 

Tangential  1.9 1.78 

Axial  1.85 2.1 

 

A comparison between MicroPET and the 16 detector Wrist Tomograph is shown in the 

table 6.4 
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Table 6.4: Comparison between important parameters of the MicroPET and Wrist 

Scanner 

  MicroPET R4 Wrist 

Scanner 

Ring Diameter 172 mm 75 mm 

FOV Transaxial 

FOV Axial 

112 mm 

78 mm 

70 mm 

20 mm 

Sensitivity 

(250 keV) 

 2.25 1.89 

Spatial Resolution 1.9 mm  1.7 mm 

 

 

6.3 Error estimates in Kinetic Parameters  

 

 

The reason for acquiring tomograhic dynamic images of the wrist was multifold: 

to assess the expected problems of partial volume effects and sensitivity.  This was 

necessary as it will be a concern for the wrist scanner; 4 or 16 detectors.  The technique 

of IDIF adds another loss of signal which is due to partial volume effects and it was 

necessary to evaluate this effect as it would cause additional noise due to low count rate 

and thus increase the noise level and decrease signal strength. If the interval is to be 

lengthened, then the noise would be reduced, however then there is a possibility that the 

peak of the curve might get distorted.  

The TAC from MicroPET acquisitions was used to estimate the error caused due 

to the sensitivity of the wrist scanner.  The wrist scanner sensitivity of 4cps/nCi/cc was 

multiplied to its time interval to convert it to counts.  With knowing the number of counts, 

noise error statistics can be done onto the count number using the following equation:  

 

Counts
Error

1
% =        (6.1) 
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This error is next applied to the activity level (nCi/cc) to predict the possible 

standard deviation seen by the detector.  The detector will give counts to calculate 

activity (in cps), while in this case, the activity (in cps) is used to calculate the number of 

counts and its error all based on the sensitivity levels and partial volume enhancements 

. 
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Figure 6.3: Estimated error bars for the sensitivity and partial volume effects for the 4 

detector prototype.  

 

Similarly, for a full ring scanner, the simulated sensitivity of 1.89 % was used to estimate 

the error bars and is shown in figure 6.4 
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Figure 6.4: Estimated error bars for the sensitivity and partial volume effects for the16 

detector full ring tomograph.  

 

The TAC from a MicroPET study and the error from the wrist scanner was used 

to calculate 4 simulated input functions were calculated.  This was used for the 

calculation of the CMRglu.  Table 6.5 shows these values for the 4 detector prototype, 

full ring wrist tomograph, the MicroPET scanner with the ‘gold standard’ value.   

 

Table 6.5: Comparison CMRglu values for Arterial samples, MicroPET and 

simulated input functions for the Wrist Scanner.  

 Arterial 

Samples 

MicroPET Wrist Tomograph    

(16 detectors) 

4 Detector  Wrist 

Scanner 

CMRGlu 

STD DEV 

63.16 

4.46 

59.28 

7.369 

60.16 

7.05 

71.37 

10.64 

 

It shows that when having a higher noise value like that of the 4 detector blood 

curves gives the CMRglu a higher variation in error; the error was significantly increased 

and CMRglu was overestimated.  Hence, less ambiguity of the input function resulted in 

more precise calculations of the kinetic errors.  Essentially, longer time intervals of count 

rates produced less noise but at the same time there is a threat of losing important peak 

features.  

 

Therefore, shorter time intervals are required, but these would also include 

statistical uncertainties.  This uncertainty could be reduced with a higher count rate since 

higher count rates give a better signal to noise ratio.  This comes back to underlining the 

fact that the sensitivity be high enough to detect low levels of activity.  

 

6.4 Internal and External Dispersion 

 

The errors discussed above are solely due to the sensitivity and partial volume 

effects as dispersion, internal or external, has not been considered so far.  The wrist 
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scanner has an inherent independent nature from external dispersion or from a PET 

scanner.  It is possible to see this dispersion using the IDIF data from internal carotid 

arteries. 

 

 

 

 

 

 

     

 

   

 

 

  

 

Figure 6.5: Temporal differences in the peak of the input functions 

 

There will be some internal dispersion occurring between the neck (carotid artery) 

and the wrist arteries.  In contrast, for an invasive method, external dispersion also factors 

in on the calculation and for the MicroPET, portability and adjustments become an issue.  

The wrist scanner’s independence from a PET scanner gives it its own timing resolution.  

Therefore, the wrist scanner can be used to sample the blood non-invasively and derive 

an accurate input function, after correction for internal dispersion between the carotids 

and wrist arteries. An ad hoc model for the two arteries transfer function could be derived, 

following appropriate corrections for delay and dispersion of the measured arterial blood.  

 

6. 5 Methods of extracting the peak of an input function  

 

The essential step in the generation of the image-derived input function is the 

localization of the blood vessel component(s) from dynamics of the tracer in the vascular 
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space.  Manual drawing of a blood vessel region of interest (ROI) around the wrist 

arteries and a vascular ROI was defined on the co-registered high resolution MRI data for 

the internal carotid arteries was used for this thesis.  A number of statistical procedures 

have also been proposed to identify blood vessel ROI data over the space of the PET 

image using temporal tracer kinetic information, including cluster analysis (Liptrot, 2004), 

dynamic factor analysis (Wu 1996, Wu 1995) and independent component analysis (Lee 

2001, Naganawa 2005).  

 

6.5.1 Independent Component Analysis 

 

Independent component analysis (ICA) was first introduced to the neuroimaging 

field for the study of brain function using functional MRI (fMRI) data (Mckeown, 1998) 

and a number of successful fMRI-ICA studies have appeared. In the study by Lee et al, 

ICA was applied to Oxygen-15 water cardiac PET data.  The ICA generated input 

function has a tail with reduced noise as compared to that obtained by arterial blood 

sampling, while the estimates of myocardial blood flow are comparable.  Because the left 

ventricle is relatively large and clearly separated from the myocardial wall it was not 

necessary in that study to consider effects due to partial volume and spillover.  

Incorporating specific properties of the PET data, a special version of ICA, Extraction of 

plasma TAC using ICA (EPICA), was introduced by Naganawa et al, (2003, 2005).  As 

the sizes of the blood vessels in the brain are small relative to the image resolution, 

effects of partial volume can not be safely ignored.  Hence EPICA used a single arterial 

blood sample to scale the ICA generated image-derived input function, and effects of 

spillover are implicitly accounted for through the source signal mixing process.  Chen et 

al used FMRLAB and proposed the use of the Infomax ICA algorithm as a way to 

automate the localization of both the blood vessel ROI and the surrounding tissue ROI.  

The equation used by them is of the form explained in Chapter 4, where partial volume 

and spillover effects are defined by recovery coefficients.  For the human wrist and brain 

images EPICA was implemented and the correction was done using a recovery 

coefficient  

 

David
Highlight



 136

 The basic idea of Independent Component Analysis is to take a set of 

observations and to attempt to find a set of independent components that explain the data. 

The origins of this method are in the so-called “cocktail party problem” (Appendix B 

shows details of the motivation and basic principle of ICA) 

 

As presented in Hyvärinen and Oja (1999), Independent Component Analysis starts with 

a vector of observations, 

x = (x1, . . . , xn)    (6.2) 

 

The basic assumption here is that each of these observations can be derived from a set of 

n independent components: 

xi=ai1s1+……+ainsn 

or, using a matrix notation,  

x = As.     (6.3) 

 

Generally, bold lower case letters indicate vectors and bold upper-case letters 

denote matrices. Here s = (s1, . . . sn) is a random vector the latent variables, or 

independent components and A is a m × n mixing matrix.  The task is to find both s and 

A.  The basic assumption in ICA is that the components si  are independent of each other: 

that is,  

     P(si, sj) = P(si)P(sj).      (6.4) 

 

Further, the distributions of si can be assumed to be unknown, except that they may not 

be normal.  If the data is composed of more than one normally distributed components 

ICA is impossible.  There are two limitations in ICA.  First, it is impossible to determine 

the variances of the independent components.  This is because both A and s are unknown: 

the variance of si can be changed at will by adjusting the corresponding column of A 

appropriately.  Second, because both A and s are unknown, the order of the independent 

components cannot be determined: it is possible to change the order of one of these, if the 

other is changed to match.  Furthermore, as the variances cannot be determined there is 

no obvious yardstick for determining the relative importance of the different components. 
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6.5.2 Preprocessing of data 

 

Before applying an ICA algorithm on the data, some preprocessing is usually needed. 

 

Centering 

The most basic and necessary preprocessing is to center x, i.e. subtract its mean 

vector m = E{x} so as to make x a zero-mean variable. This implies that s is zero-mean 

as well, as can be seen by taking expectations on both sides of equation 6.3.  This 

preprocessing is made solely to simplify the ICA algorithms.  After estimating the mixing 

matrix A with centered data, the estimation is completed by adding the mean vector of s 

back to the centered estimates of s.  The mean vector of s is given by A
−1

m, where m is 

the mean that was subtracted in the preprocessing. 

 

Whitening 

Another useful preprocessing strategy in ICA is to first whiten the observed 

variables. This means that before the application of the ICA algorithm (and after 

centering), the observed vector x is transformed linearly so that a new vector x~  is 

obtained which is white, i.e. its components are uncorrelated and their variances equal 

unity.   In other words, the covariance matrix of x~ equals the identity matrix: 

 

E{ x~ x~
T
 } = I.     (6.5) 

 

One popular method for whitening is to use the eigen-value decomposition (SVD) of the 

covariance matrix E{xx
T
}=EDE

T
 , where E is the orthogonal matrix of eigenvectors of 

E{xx
T
} and D is the diagonal matrix of its eigen values, D= diag(d1, ...,dn). E{xx

T
 } can 

be estimated in a standard way from the available sample x(1), ...,x(T). Whitening can 

now be done by 

x~ = ED
−1/2

E
T
 x     (6.6) 

where the matrix D
−1/2 

is computed by a simple component-wise operation as D
−1/2

 = 

diag(d1
−1/2

 , ...,dn
−1/2

). E{ x~ x~
T
 } = I, can be checked.  



 138

Whitening transforms the mixing matrix into a new one, A
~

. We have from (6.3) and 

(6.6): 

x~  = ED
−1/2

E
T
As = A

~
s     (6.7) 

The utility of whitening resides in the fact that the new mixing matrix A
~

 is 

orthogonal.  

This can be seen from 

E{ x~ x~
T
 } = A

~
E{ss

T
 } 

T 
= A

~
A
~ T

 = I.    (6.8) 

 

Process of whitening also reduces the number of parameters to be estimated. 

Instead of having to estimate the n
2
 parameters that are the elements of the original 

matrix A, the new, orthogonal mixing matrix A
~

 needs to be estimated. An orthogonal 

matrix contains n(n−1)/2 degrees of freedom. For example, in two dimensions, an 

orthogonal transformation is determined by a single angle parameter.  In larger 

dimensions, an orthogonal matrix contains only about half of the number of parameters of 

an arbitrary matrix.  Thus one can say that whitening solves half of the problem of ICA.  

Because whitening is a very simple and standard procedure, much simpler than any ICA 

algorithms, it is a good idea to reduce the complexity of the problem this way.  It may 

also be quite useful to reduce the dimension of the data at the same time as we do the 

whitening.  The Eigen values dj of E{xx
T
} which are too small can be discarded, as is 

often done in the statistical technique of principal component analysis.  This has often the 

effect of reducing noise.  Moreover, dimension reduction prevents over-learning, which 

can sometimes be observed in ICA (Hyvärinen et al., 1999). 

 

6.5.3 Fast ICA 

 

The FastICA algorithm, as presented by Hyvärinen and Oja (1999), starts with a 

proposed weight vector w.  The task is to find a direction for w so that the projection w
T
x 

maximizes the non-normality, as measured by the negentropy J(w
T
x).  The variance of 

w
T
x — and, as the data has already been whitened and centered as a preprocessing step, 

the norm of w is constrained to unity. 
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The FastICA is based on a fixed-point iteration scheme for finding a maximum of the 

non-gaussianity of w
T
 x, as measured in (Hyvärinen and Oja, 1997; Hyvärinen, 1999a). It 

can be also derived as an approximate Newton iteration (Hyvärinen, 1999a).  Denote by g 

the derivative of the non-quadratic cost function G and the derivatives of the functions  

g1(u) = tanh(a
1
u),     (6.9) 

g2(u) = uexp(−u
2
/2) 

where 1 ≤a
1
 ≤ 2 is some suitable constant, often taken as a1 = 1. 

 

The algorithm for finding one independent component is as follows: 

1. Choose an initial weight vector w 

2. Let w+ = E{xg(w
T
x)} − E{g0(w

T
x)}w 

3. Let w = w+ / ||w+|| 

4. If not converged, go back to 2 

 

Convergence in step 4 means that the old and new values of w point in the same 

direction that is, wold · w = 1. The algorithm presented above computes only one of the 

independent components; to get all it is necessary to repeat the process. This can be done 

in parallel, with different weight vectors; however, w
T

1x, . . . ,w
T

nx have to be 

decorrelated after every iteration, to prevent the different vectors from converging to the 

same maxima. Hyvärinen and Oja (1999) present a couple of different ways to 

accomplish this, and is taken care in EPICA algorithm  

 

6.5.4 Application of EPICA to Dynamic Wrist Images  

  

The value of the qth voxel of the PET image at time, t, is described by 

 

x(q,t)=sp(q)cp(t)+st(q)ct(t)   (q=1,…..Q)   (6.10) 

where Q is the total number of voxels, sp(q) is determined by the ratio of the tissue blood 

volume to the qth voxel, st(q) is determined by the scale of the tTAC values and the ratio 

of the brain tissue to the qth voxel, and cp(t)and ct(t) are the pTAC and the tTAC, 
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respectively. The history of the concentration of FDG at the qth voxel, x(q), can be 

represented by 

x(q)=sp(q)cp+st(q)ct      (6.10) 

 

where x(q), cp and ct are column vectors. In matrix notation, can be represented as 

              

X = [cp  ct] [sp st] = CS     (6.11) 

 

Here, X, is the dynamic PET image matrix, and sp and st are the blood volume image and 

the tissue image, respectively. 

 

As seen in section 6.5.1, C and S are regarded as the mixing matrix and the source matrix 

the ICA model, respectively. The dynamic PET image sequence is assumed to be a linear 

combination of spatially independent images, namely the blood volume image and the 

tissue image.  The pTAC is a column of the mixing matrix.  Note that independence is 

not assumed in time-activity curves (TACs), but in their spatial distributions. 

 

Procedure of EPICA  

 

The EPICA procedure is summarized below. (Naganawa, 2005) 

Step 1) Append negative images to achieve the zero-mean source signal that the ICA 

algorithm requires. 

Step 2) Standardize each voxel’s TAC by the time integral to emphasize pTAC-related 

information. 

Step 3) To obtain a stable estimation, reduce the dimension of the dynamic PET image 

sequence to two using principal component analysis (PCA). 

Step 4) Apply FastICA (a deflation approach) to the dynamic PET images. 

 

After the curve is estimated it is the scaled using recovery coefficients as previously used 

for the IDIF extracted using ROIs 
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6.5.5. ICA vs. ROI analysis 

 

Figure 6.6 below shows a ROI IDIF and an IDIF from ICA technique implemented using 

EPICA.  The characteristics match well and the CMRglu only varied by 5% between the 

two techniques.  The arterial plasma input function is also shown. However, the statistical 

uncertainty may introduce bias in the metabolic rates, this bias can be reduced by using 

venous samples past later times, a method proved to give comparable binding potential 

values for [7-methyl-11C]-(E)-8-(3,4,5-trimethoxystyryl)-1,3,7-trimethylxanthine 

([11C]TMSX) (Naganawa, 2007) 
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Figure6. Input functions obtained from invasive arterial samples, ROI and independent 

component analysis are compared  

 

The need to correct for the peak of the IDIF obtained from ICA, limits the feasibility of 

this technique.  The results from ICA did not differ from the input function extracted 

from dynamic images by drawing ROIs.  Since the latter technique is not computationally 

intensive and relatively straight forward, it may be preferred over independent component 

analysis.  
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6.5 Future Work  

 

 Theoretically spatial resolution and sensitivity of current tomographs seem to be 

adequate for accurate quantification of the blood radioactivity concentration from blood 

vessels (ulnar/radial and internal carotid arteries) imaged in dynamic PET studies.  

Preceding chapters have shown that this goal can be partly achieved, requiring 

considerable image processing and providing with adequate results only in limited 

conditions.  As predicted in figure 3.5 b; PET images acquired with the state of art 

tomograph should contain a number of voxels, at least in the largest blood vessels, which 

are not contaminated by partial volume effects.  With the implementation of head motion 

correction methods (Bloomfiled, 2003), the degradation of the spatial resolution 

frequently observed when studying human subjects should no longer be a limiting factor 

in derivation of reliable time-activity curves from small brain regions. These major 

technical developments open up new possibilities.  Alternatively, sophistication of the 

system matrix used in iterative reconstruction algorithms could eventually allow the 

partial volume and spillover correction to be performed on sinogram data in the 

reconstruction rather than in the PET image post-reconstruction (Reader, 2007).  

 

 Need for venous samples for metabolite correction limit the technique presented 

from being totally non-invasive. Although invasive this technique requires only few 

temporally spaced samples to calibrate the wrist scanner and correct for presence of 

metabolites if any.  

 

 The technique explored in the thesis has only been validated completely for two 

C-11 based radiotracers, [
11

C]raclopride and [
11

C]clorgyline and will have to be validated 

for other tracers. 
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Appendix A 

 

Description of the commercial robot system used for 

metabolite analysis.  

 

Metabolite analysis in terms of identification of metabolic pathways of a 

compound of interest as well as quantification of their metabolic products for a given 

period of time has been shown to be a prerequisite for quantitative PET investigations 

and moreover to be of interest for a deeper understanding of physiological as well as 

pathological processes in the body. 

 

Laboratory Automation System 

 

Figure A1 shows the robot table configuration of laboratory automation hardware used at 

Brookhaven National Laboratoty. The laboratory automation system (Zymark 

PyTechnology II) consisted of the following: (Alexoff, 1996) 

 

• Py-SectionTM compatible hardware/software modules from Zymark Corporation, 

Hopkinton, Massachusetts  

• A Zymate II+ arm with AccutrakTM rotary feedback control or an XP robot arm 

• A general purpose hand for manipulating 16 x 100 mm glass test tubes  

• A 1 mL pipetting hand  

• Two 50-position 16 x 100 mm test tube racks 

• A six solvent Liquid/Solid Extraction PySectionTM  

• A 3000 rpm centrifuge 

• A Mettler AE200 balance PySectionTM  

• A six solvent Dilute and Dissolve (w/vortex) PySection TM  

• Three Master Laboratory syringe pump PySectionsTM 

• A Power and Event Controller input/output PySectionTM 
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The Zymark’s solid phase extraction station is modified to include liquid level 

sensing using an optical proximity detector. The SmartEyeTM (Tritonics, Tampa, FL) 

detector is mounted to the BondElut station just under the pneumatic nozzle. Slotted 

brackets permit limited vertical, depth, and horizontal adjustment. The detector’s output 

signal is used to verify the presence of a cartridge and to control the duration of solvent 

elution on the cartridge. 

 

A custom “PySection” for radioactivity measurement using a NaI (3 inch crystal) well 

counter was constructed and interfaced with Zymark’s PyTechnology system. The 

custom PySection accepts standard 16 x 100 mm test tubes and provides a two-position 

lead rack for temporary sample storage.  A Plexiglas insert for the well counter was built 

to locate reproducibly a 16 x 100 mm test tube in the center of the well.  An extraction 

cartridge parking station made from rubber stopper, mounted upside down, also resides 

on the lead rack.  The robot turns a standard extraction cartridge upside down and rests it 

on the inverted stopper attached to the lead rack.  The stopper ensures that the cartridge 

remains upright upright while the robot positions itself to regrip the cartridge at the 

standard container grip position before inserting it into the well counter.  The hazardous 

waste station consists of a three-tiered disposal system designed for recycling and sorting 

solid waste.  Empty cartridges used for purging the solvent delivery lines to the solid 

phase extraction station are recycled by the robot.  Plasma-contaminated cartridges and 

test tubes are sorted and placed directly into appropriate waste containers (sharps for 

human waste) residing directly on the robot table.  The waste is sterilized before disposal. 

 

The laboratory automation system is controlled by a custom microcomputer and 

operating system named System V (ver. 1.52) running System Productivity Software 

(SPS) version 1.3. This system is controlled remotely from an IBM PS/2 Model 60 

microcomputer running DOS 3.30 using Zymark’s high speed serial interface and 

PCREMOTE software. The PSI2 is also connected via RS-232 to standard NIM 

electronics interfacing the NaI well counter.  The signal output from the counter/timer is 

connected to one of the robot’s digital inputs (TTL) at the Power and Event Controller.  
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This signal allows the robot to determine when the counter has finished counting a 

sample.  

 

 

Plasma radioactivity assay 

 

Arterial whole blood samples (0.2-0.4 mL) are obtained with an automated blood 

sampling device (Ole Dich, Denmark) every 2.5 s for 2 min post-injection of the tracer.   

Figure A1. Robot table (5’ x 8’) diagram depicting physical layout of all robot 

hardware required for automated (Courtesy David Alexoff) 
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Blood samples are stored in heparinized 1.5  mL Eppendorf centrifuge tubes that are 

manually inserted (cap off) down to the bottom of 16 x 100 test tubes  residing in the 

robot’s input rack.  Samples were centrifuged (3000 rpm for 2 min), pipetted, weighed, 

and counted in a NaI well counter by the robot automatically. An iterative, gravimetric 

feedback control algorithm was developed to obtain sufficient plasma fee of red blood 

cells for radioactivity counting by the robot.  The algorithm uses the value of the PET 

subject’s hematocrit and the maximum whole blood volume in all the tubes to calculate a 

“safe vertical distance” (3 mm) above the calculated cell interface.  This distance is about 

two times the vertical reproducibility specification of the robot.  After the robot positions 

the pipette tip at the calculated safe vertical position, the computer program calculates the 

volume of plasma above this position and draws up a volume corresponding to this 

estimate.  This plasma aliquot is then weighed in a tared 16 x 100 mm tube.  If the weight 

exceeds 0.020 g, the sample is counted.  If the weight is less than 0.020 g, an additional 

plasma aliquot is drawn in the following manner.  Since the volume of plasma the robot 

attempted to draw when the pipette tip was nominally 3 mm above the first estimate of 

the cell plasma interface is known, a revised estimate of the maximum whole blood 

volume can be made by subtracting the calculated pipette volume from the original 

estimate of the whole blood volume.  This revised estimate of the volume of whole blood 

is used to calculate a new position of the cell plasma interface and a new safe vertical 

distance. The pipette tip is repositioned at this new level and another aliquot is drawn. 

This process continues until either a total plasma weight of more than 0.020 g is reached 

or when the calculated volume of whole blood is less than 0.075 mL.  

 

Solid Phase Extraction (SPE) parent compound assays human plasma (0.05-l.0 

mL) is added to 3 mL water and stored at room temperature before being applied onto 

activated BondElut cartridges that are pre-loaded with 2 mL deionized water. These 

combined water and plasma volumes are termed the “dead volume.”  After application 

onto the cartridge, a series of solvent rinses is carried out sequentially by the robot to 

remove the metabolite fractions.  For each parent compound assay, the robot measures 

the radioactivity of the sample tube before and after pouring onto the SPE cartridge, and 

assays the radioactivity of the dead volume and each of the solvent washes.  A regulated 
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nitrogen gas pressure of 6-10 psi is used to drive liquid through the column. The 

radioactivity of the rinsed SPE cartridge is measured before disposal.  All liquid fractions 

and empty sample tubes are stored in the test tube racks until automated clean-up during 

the evening when each tube is emptied into the infectious waste container and then 

discarded in a large sharps container at the hazardous waste station. 

 

This simultaneous sequence of events including shuffling tubes and cartridges, 

acquiring radioactivity data, and moving liquids through the cartridge continues until all 

the samples are processed. Typically eight samples are processed for each study using a 

sampling protocol of 1,5,10,20,30,45,60,90 minutes post injection. 

 

The quantity of parent compound present in each plasma sample is reported as a 

percent of the total radioactivity based on the radioactivity measured in the "pure" 

fraction, usually the SPE cartridge, after correction for background radioactivity, 

container geometry-dependent counting efficiency, total radioactivity recovery, and 

radionuclide decay.  

 

Most often the problem of separating all metabolites from the parent compound in 

a PET study can be reduced to the problem of separating more polar molecules from their 

larger more non-polar parent radiotracer. Only the radioactive metabolites need be 

separated, further simplifying the assay. Figure A2 shows the simple method 

development process used at Brookhaven National Laboratory to develop robotic SPE-

only assays of PET radiotracers in plasma to meet these goals. 

 

Results of a screening protocol that included a basic aqueous wash and several 

washes of varying methanol/water mixtures is presented in Figure A3. This figure shows 

a clear shifting of the [11C]raclopride radioactivity from the mixtures of less methanol to 

more methanol as the polarity of the bonded-phase is decreased.  These same bonded 

phases were used in a baboon experiment to determine the selectivity of the bonded 

phases for [11C]raclopride and its radioactive metabolites at a single time-point post 

injection. 
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Figure A2: Simple SPE-only methods development strategy for non-polar extraction of 

parent compound from plasma. (Courtesy David Alexoff) 

 

Figure A3: Results of non-polar extraction screening run with [ 11C]raclopride 

(Courtesy David Alexoff) 
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The table below shows the robotic SPE metabolite assays.  

11C 

radiotracer 

SPE Rinse1 (mL) Rinse2 (mL) Rinse3 (mL) Unchanged* 

Raclopride CBA Water (5) pH 7 PB (5) pH 7 PB (5) CBA 

      

Clorgyline CN  Water (5) 100% ME  100% ME 

CBA: Weak cation Exchange (carboxylic acid) 

PB: Phosphate buffer  

ME: Methanol 

* Refers to the parent radiotracer. CBA means that the parent radiotracer is retained on 

weak cation exchange While 100% ME means that it is eluted in 100% methanol. Elution 

in this case is necessary since a label metabolite is also retained by the solid phase.  
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Appendix B  

 

Catalog of Independent Component Analysis: Motivation, 

Derivation and Process. 

 

 

Most measured quantities are actually mixtures of other quantities. Typical 

examples are  

 

(a) sound signals in a room with several people talking simultaneously,  

(b) an electroencephalogram (EEG) signal, which contains contributions from many 

different brain regions, and  

(c) a person’s height, which is determined by contributions from many different genetic 

and environmental factors.  

 

Science is, to a large extent, concerned with establishing the precise nature of the 

component processes responsible for a given set of measured quantities.  Under certain 

conditions, the signals underlying measured quantities can be recovered by making use of 

Independent Component Analysis (ICA). (Comon, 1994)   

 

The success of ICA depends on one key assumption regarding the nature of the 

physical world.  This assumption is that independent variables or signals are generated by 

different underlying physical processes.  If two signals are independent, then the value of 

one signal cannot be used to predict anything about the corresponding value of the other 

signal.   As it is not usually possible to measure the output of a single physical process, it 

follows that most measured signals must be mixtures of independent signals. G iven such 

a set of measured signals (i.e., mixtures), ICA works by finding a transformation of those 

mixtures, which produces independent signal components, on the assumption that each of 

these independent component signals is associated with a different physical process.  The 

measured signals are known as signal mixtures, and the required independent signals are 

known as source signals 

 

The classical application of the ICA model is blind source separation. In blind 

source separation, the observed values of x correspond to a realization of an m 

dimensional discrete-time signal x(t), t = 1, 2……. Then the independent components 

si(t) are called source signals, which are usually original, uncorrupted signals or noise 

sources.  If two people are speaking simultaneously and there are two microphones held 

in different positions. The microphones gives two recorded time signals, which denoted 

x1(t) and x2(t), with x1 and x2 the amplitudes, and t the time index. Each of these recorded 

signals is a weighted sum of the speech signals emitted by the two speakers, s1(t) and s2(t).  

Expressing this as a linear equation,  
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x1(t) = a11s1 +a12s2 (1)………………………….B1 

x2(t) = a21s1 +a22s2 (2)………………………….B2 

 

where a11,a12,a21, and a22 are some parameters that depend on the distances of the 

microphones from the speakers. The task is now to separate the two original speech 

signals s1(t) and s2(t), using  the recorded signals x1(t) and x2(t). This is called the 

cocktail-party problem.  As an illustration, consider the waveforms in figure B1 and 

figure B2. The problem is to recover the data in Figure B1 (the original speech signals) 

using only the data in Figure. B2 (the mixed signals) (Hyvärinen. 2001).  

 

One approach to solving this problem would be to use some information on the 

statistical properties of the signals si(t) to estimate the aii. It is assumed that s1(t) and s2(t), 

at each time instant t, are statistically independent. The technique of ICA, can be used to 

estimate the aij based on the information of their independence, which separates the two 

original source signals s1(t) and s2(t) from their mixtures x1(t) and x2(t).  Figure B3 gives 

the two signals estimated by the ICA method. As can be seen, these are very close to the 

original source signals (their signs are reversed, but this has no significance.)  

 

 
 

    Figure B1: The original signals. 

 
  Figure B2: The observed mixtures of the source signals in Figure B1. 
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Figure B3: The estimates of the original source signals, estimated using only the 

observed signals in Figure. B2 The original signals were very accurately estimated, up to 

multiplicative signs 

 

Another example is electrical recordings of brain activity as given by an 

electroencephalogram(EEG).  The EEG data consists of recordings of electrical potentials 

in many different locations on the scalp. These potentials are presumably generated by 

mixing some underlying components of brain activity. This situation is quite similar to 

the cocktail-party problem: to find the original components of brain activity, but only 

mixtures of the components can be observed. ICA can reveal interesting information on 

brain activity observed giving access to its independent components. 

 

Independent Component Analysis 

 

Statistical independence 

 

Denote by y1, y2,…..,ym some random variables with joint density f(y1, ….,ym), 

with zero-mean. The variables yi are mutually independent, if the density function can be 

factorized: 

 

f(y1;……,ym) = f1(y1)f2(y2)……..fm(ym)    (B3) 

 

where fi(yi) denotes the marginal density of yi. This property is called statistical 

independence.  

 

Independence must be distinguished from uncorrelatedness, which means that 

 

E{yiyj} – E{yi}E{yj} = 0; for i≠ j:     (B4) 

 

Independence is in general a much stronger requirement than uncorrelatedness.  If the yi 

are independent, then 

 

E{g1(yi)g2(yj )} – E{g1(yi)}E{g2(yj )} = 0; for i ≠j:   (B5) 
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for any 2 functions g1 and g2. This is clearly a stricter condition than the condition of 

uncorrelatedness. There is, however, an important special case where independence and 

uncorrelatedness are equivalent. This is the case when y1, …..,ym have a joint Gaussian 

distribution.  Due to this property, independent component analysis is not possible for 

Gaussian variables. 

 

Definitions of linear independent component analysis 

 

In the literature, at least three different basic definitions for linear ICA can be found 

(Comon, 1994, Juten1991).  In the definitions, the observed m-dimensional random 

vector is denoted by x = (x1,….,xm)T . 

 

The first and most general definition is as follows: 

 

Definition 1 (General definition)  

 

ICA of the random vector x consists of finding a linear transform s =Wx so that the 

components si are as independent as possible, in the sense of maximizing some function 

F(s1,….,sm) that measures independence.  This definition is the most general in the sense 

that no assumptions on the data are made, which is in contrast to the definitions below.  

 

Definition 2 (Noisy ICA model)  
 

ICA of a random vector x consists of estimating the following generative model for the 

data: 

     x = As + n         (B6) 

 

where the latent variables (components) si in the vector s = (s1,…..,sn)
T
 are assumed 

independent. The matrix A is a constant m x n 'mixing' matrix, and n is a m-dimensional 

random noise vector.  This definition reduces the ICA problem to ordinary estimation of 

a latent variable model. However, this estimation problem is not very simple, and 

therefore the great majority of ICA research has concentrated on the following simplified 

definition: 

 

Definition 3 (Noise-free ICA model)  
 

ICA of a random vector x consists of estimating the following generative model for the 

data: 

    x = As       (B7) 

 

where A and s are as in Definition 2. 

 

Here the noise vector has been omitted.  The noise-free model is considered a tractable 

approximation of the more realistic noisy model.  

 

Relations to classical methods 
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ICA is closely related to several of the methods used for blind source separation problem 

 

1. By definition, ICA can be considered a method for achieving redundancy reduction. 

Indeed, there is experimental evidence that for certain kinds of sensory data, the 

conventional ICA algorithms do find directions that are compatible with existing 

neurophysiological data, assumed to reflect redundancy reduction (Hyvärinen, 1999) 

 

2. In the noise-free case, the estimation of the ICA model means simply finding certain 

'interesting' projections, which give estimates of the independent components. Thus ICA 

can be considered, a special case of projection pursuit. The conventional criteria used for 

finding the 'interesting' directions in projections pursuit coincide essentially with the 

criteria used for estimating the independent components. 

 

3. Another close affinity can be found between ICA and blind deconvolution. Due to the 

assumption that the values of the original signal s(t) are independent for different t, this 

problem is formally closely related to the problem of independent component analysis.  

Indeed, many ideas developed for blind deconvolution can be directly applied for ICA, 

and vice versa.  

 

4. In factor analysis, the following generative model for the data is postulated: 

x = As + n      (B8) 

 

where x is the vector of the observed variables, s is the vector of the latent variables 

(factors) that cannot be observed, A is a constant m _ n matrix, and the vector n is noise, 

of the same dimension, m, as x. All the variables in s and n are assumed to be Gaussian. 

In addition, it is usually assumed that s has a lower dimension than x. Thus, factor 

analysis is basically a method of reducing the dimension of the data, in a way similar to 

Principal Component Analysis (PCA).  

 

Comparing equation B6 in Definition 2 with the definition of factor analysis (B8), the 

connection between factor analysis and ICA becomes clear. Indeed, ICA may be 

considered a non-Gaussian factor analysis. A combination of factor analysis and ICA can 

be obtained using factor rotations.  

 

5. Using Definition 1, the relation to principal component analysis is also evident. Both 

methods formulate a general objective function that define the 'interestingness' of a linear 

representation, and then maximize that function. A second relation between PCA and 

ICA is that both are related to factor analysis, though under the contradictory assumptions 

of Gaussianity and non-Gaussianity, respectively. PCA and ICA define their objective 

functions in quite different ways.  PCA uses only second-order statistics, while ICA is 

impossible using only second-order statistics. PCA emphasizes dimension reduction, 

while ICA may reduce the dimension, increase it or leave it unchanged. 
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Figure B4: The relations between ICA and some other methods. The lines show close 

connections, and the texts next to the lines show the assumptions needed for the 

connection. (Hyvärinen, 1999) 

 

 

The connections between ICA and some other methods are illustrated in figure B4. 

The lines in the diagram indicate very close connections, under the assumptions given 

next to the lines.  First, if no assumptions on the data are made, and in particular no noise 

is postulated in the data, ICA can be considered a method of exploratory data analysis, as 

projection pursuit. Indeed, using Definition 1, ICA means simply finding some 

interesting projections of the data.  If a noisy data modelis assumed, as in Definition 2, 

ICA can be considered a variation of factor analysis for non-Gaussian data. ICA 

according to Definition 3, or the noise-free ICA data model, is something between these 

two approaches. As for PCA, its connection to ICA can be considered indirect, since it 

can be used to perform factor analysis for Gaussian data. 
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